Journal of Medicinal Chemistry
Article
(7) Jin, Z. T.; Li, K.; Li, M.; Ren, Z. G.; Wang, F. S.; Zhu, J. Y.; Leng,
X. S.; Yu, W. D. G-protein coupled receptor 34 knockdown impairs
the proliferation and migration of HGC-27 gastric cancer cells in vitro.
Chin. Med. J. (Engl) 2015, 128, 545−549.
University of Pharmacy and Applied Life Sciences, Niigata,
Japan, for his initial guidance of the computational study. This
work was supported by the Platform for Drug Discovery,
Informatics, and Structural Life Science from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
This work was supported by JST, PRESTO Grant Number
JPMJPR1331 (to A.I.); the PRIME from Japan Agency for
Medical Research and development, AMED (to A.I); Japan
Society for the Promotion of Science (JSPS) Grant Number
16H05085 (J.A.); AMED-CREST, AMED (to J.A.).
(8) Ansell, S. M.; Akasaka, T.; McPhail, E.; Manske, M.; Braggio, E.;
Price-Troska, T.; Ziesmer, S.; Secreto, F.; Fonseca, R.; Gupta, M.; Law,
M.; Witzig, T. E.; Dyer, M. J.; Dogan, A.; Cerhan, J. R.; Novak, A. J.
t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a
role for GPR34 in tumor cell growth. Blood 2012, 120, 3949−3957.
(9) Iida, Y.; H Tsuno, N.; Kishikawa, J.; Kaneko, K.; Murono, K.;
Kawai, K.; Ikeda, T.; Ishihara, S.; Yamaguchi, H.; Sunami, E.;
Kitayama, J.; Yatomi, Y.; Watanabe, T. Lysophosphatidylserine
stimulates chemotactic migration of colorectal cancer cells through
GPR34 and PI3K/Akt pathway. Anticancer Res. 2014, 34, 5465−5472.
(10) Iwashita, M.; Makide, K.; Nonomura, T.; Misumi, Y.; Otani, Y.;
Ishida, M.; Taguchi, R.; Tsujimoto, M.; Aoki, J.; Arai, H.; Ohwada, T.
Synthesis and evaluation of lysophosphatidylserine analogues as
inducers of mast cell degranulation. Potent activities of lysophospha-
tidylthreonine and its 2-deoxy derivative. J. Med. Chem. 2009, 52,
5837−5863.
(11) Uwamizu, A.; Inoue, A.; Suzuki, K.; Okudaira, M.; Shuto, A.;
Shinjo, Y.; Ishiguro, J.; Makide, K.; Ikubo, M.; Nakamura, S.; Jung, S.;
Sayama, M.; Otani, Y.; Ohwada, T.; Aoki, J. Lysophosphatidylserine
analogues differentially activate three LysoPS receptors. J. Biochem.
2015, 157, 151−160.
(12) Ikubo, M.; Inoue, A.; Nakamura, S.; Jung, S.; Sayama, M.; Otani,
Y.; Uwamizu, A.; Suzuki, K.; Kishi, T.; Shuto, A.; Ishiguro, J.;
Okudaira, M.; Kano, K.; Makide, K.; Aoki, J.; Ohwada, T. Structure-
activity relationships of lysophosphatidylserine analogs as agonists of
G-protein-coupled receptors GPR34, P2Y10, and GPR174. J. Med.
Chem. 2015, 58, 4204−4219.
(13) Jung, S.; Inoue, A.; Nakamura, S.; Kishi, T.; Uwamizu, A.;
Sayama, M.; Ikubo, M.; Otani, Y.; Kano, K.; Makide, K.; Aoki, J.;
Ohwada, T. Conformational constraint of the glycerol moiety of
lysophosphatidylserine affords compounds with receptor subtype
selectivity. J. Med. Chem. 2016, 59, 3750−3776.
(14) Chan, D. M.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. New
N-and O-arylations with phenylboronic acids and cupric acetate.
Tetrahedron Lett. 1998, 39, 2933−2936.
(15) Evans, D. A.; Katz, J. L.; West, T. R. Synthesis of diaryl ethers
through the copper-promoted arylation of phenols with arylboronic
acids. An expedient synthesis of thyroxine. Tetrahedron Lett. 1998, 39,
2937−2940.
ABBREVIATIONS USED
■
LysoPS, lysophosphatidylserine; PS, phosphatidylserine; LPS,
lysophosphatidylserine receptor; S1P, Sphingosine-1-phos-
phate; TGFα, transforming growth factor-alpha; AP-TGFα,
alkaline phosphatase-tagged TGFα; TM, transmembrane helix;
EL, extracellular loop; 2MeSADP, 2-methylthio-adenosine-5′-
diphosphate; DOPE, discrete optimized protein energy; MD,
molecular dynamics; MM-GBSA, molecular mechanics with
generalized Born and surface area solvation; SP, standard
precision; Mp, melting point; EDCI, N-(3-(dimethylamino)-
propyl)-N-ethylcarbodiimide hydrochloride; MS, molecular
sieves; HBSS, Hanks’ balanced salt solution; HEPES, 4-(2-
hydroxyethyl)piperazine-1-ethanesulfonic acid; CM, condi-
tioned media; DMEM, Dulbecco’s modified Eagle’s medium;
DAPI, 4′,6-diamidino-2-phenylindole; CI, confidence interval;
SEM, standard errors of mean; IFD, induced fit docking; GPU,
graphics processing unit; POPC, 1-palmitoyl-2-oleoylphospha-
tidylcholine; PDBTM, Protein Data Bank of Transmembrane
Proteins; NPγT, constant normal pressure and lateral surface
tension of membranes and constant temperature
REFERENCES
■
(1) Sugo, T.; Tachimoto, H.; Chikatsu, T.; Murakami, Y.; Kikukawa,
Y.; Sato, S.; Kikuchi, K.; Nagi, T.; Harada, M.; Ogi, K.; Ebisawa, M.;
Mori, M. Identification of a lysophosphatidylserine receptor on mast
cells. Biochem. Biophys. Res. Commun. 2006, 341, 1078−1087.
(2) Kitamura, H.; Makide, K.; Shuto, A.; Ikubo, M.; Inoue, A.; Suzuki,
K.; Sato, Y.; Nakamura, S.; Otani, Y.; Ohwada, T.; Aoki, J. GPR34 is a
receptor for lysophosphatidylserine with a fatty acid at the sn-2
position. J. Biochem. 2012, 151, 511−518.
(16) Inoue, A.; Ishiguro, J.; Kitamura, H.; Arima, N.; Okutani, M.;
Shuto, A.; Higashiyama, S.; Ohwada, T.; Arai, H.; Makide, K. TGFα
shedding assay: an accurate and versatile method for detecting GPCR
activation. Nat. Methods 2012, 9, 1021−1029.
(3) Makide, K.; Kitamura, H.; Sato, Y.; Okutani, M.; Aoki, J.
Emerging lysophospholipid mediators, lysophosphatidylserine, lyso-
phosphatidylthreonine, lysophosphatidylethanolamine and lysophos-
phatidylglycerol. Prostaglandins Other Lipid Mediators 2009, 89, 135−
139.
(17) Fredriksson, R.; Lagerstrom, M. C.; Lundin, L.-G.; Schioth, H.
̈
̈
B. The G-protein-coupled receptors in the human genome form five
main families. Phylogenetic analysis, paralogon groups, and finger-
prints. Mol. Pharmacol. 2003, 63, 1256−1272.
(4) Liebscher, I.; Muller, U.; Teupser, D.; Engemaier, E.; Engel, K. M.
̈
(18) Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.;
Zheng, Y.; Green, H. F.; Pandey, A.; Dror, R. O.; Shaw, D. E.; Weis,
W. I.; Coughlin, S. R.; Kobilka, B. K. High-resolution crystal structure
of human protease-activated receptor 1. Nature 2012, 492, 387−392.
(19) Zhang, D.; Gao, Z.-G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang,
J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; et al. Two disparate ligand-
binding sites in the human P2Y1 receptor. Nature 2015, 520, 317−
321.
Y.; Ritscher, L.; Thor, D.; Sangkuhl, K.; Ricken, A.; Wurm, A.; Piehler,
D.; Schmutzler, S.; Fuhrmann, H.; Albert, F. W.; Reichenbach, A.;
Thiery, J.; Schoneberg, T.; Schulz, A. Altered immune response in
̈
mice deficient for the G protein-coupled receptor GPR34. J. Biol.
Chem. 2011, 286, 2101−2110.
(5) (a) Preissler, J.; Grosche, A.; Lede, V.; Le Duc, D.; Krugel, K.;
̈
Matyash, V.; Szulzewsky, F.; Kallendrusch, S.; Immig, K.; Kettenmann,
H.; Bechmann, I.; Schoneberg, T.; Schulz, A. Altered microglial
̈
(20) Zhang, K.; Zhang, J.; Gao, Z.-G.; Zhang, D.; Zhu, L.; Han, G.
W.; Moss, S. M.; Paoletta, S.; Kiselev, E.; Lu, W.; Fenalti, G.; Zhang,
W.; Muller, C. E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.;
Jacobson, K. A.; Stevens, R. C.; Wu, B.; Zhao, Q. Structure of the
human P2Y12 receptor in complex with an antithrombotic drug. Nature
2014, 509, 115−118.
phagocytosis in GPR34-deficient mice. Glia 2015, 63, 206−215.
(b) Tokizane, K.; Konishi, H.; Makide, K.; Kawana, H.; Nakamuta, S.;
Kaibuchi, K.; Ohwada, T.; Aoki, J.; Kiyama, H. Phospholipid
localization implies microglial morphology and function via Cdc42
in vitro. Glia 2017, 65, 740−755.
(6) Yu, W.; Ma, S.; Wang, L.; Zuo, B.; Li, M.; Qiao, Z.; Pan, X.; Liu,
Y.; Wang, J. Upregulation of GPR34 expression affects the progression
and prognosis of human gastric adenocarcinoma by PI3K/PDK1/AKT
pathway. Histol. Histopathol. 2013, 28, 1629−1638.
(21) Zhang, J.; Zhang, K.; Gao, Z.-G.; Paoletta, S.; Zhang, D.; Han,
G. W.; Li, T.; Ma, L.; Zhang, W.; Muller, C. E.; Yang, H.; Jiang, H.;
̈
Cherezov, V.; Katritch, V.; Jacobson, K. A.; Stevens, R. C.; Wu, B.;
O
J. Med. Chem. XXXX, XXX, XXX−XXX