4000 J. Agric. Food Chem., Vol. 44, No. 12, 1996
Mathew and Khan
Krause, A.; Hancock, W. G.; Minard, R. D.; Freyer, A. J .;
Honeycutt, R. C.; Lebaron, H. M.; Paulson, D. L.; Liu, S,
Y.; Bollag, J . M. Microbial transformation of the herbicide
metolachlor by a soil actinomycete. J . Agric. Food Chem.
1985, 33, 584-589.
Larson, R. A.; Schlauch, B.; Marley, K. Ferric ion promoted
photodecomposition of triazines. J . Agric. Food Chem. 1991,
39, 2057-2062.
Lebaron, H. M.; Mcfarland, J . E.; Simoneaux, B. J . Meto-
lachlor. In Herbicides: Chemistry, Degradation and Mode
of Action; Kearney, P. C., Kaufman, D. D., Eds.; Dekker:
New York, 1988; Vol. 3, Chapter 7.
Liu, S, Y.; Zheng, Z.; Zhang, R.; Bollag, J . M. Sorption and
metabolism of metolachlor by a bacterial community. Appl.
Environ. Microbiol. 1989, 55, 733-740.
N-chloroacetyl groups was found in P5. In P4, the
methoxyl group of the N-alkyl substituent was de-
methylated, and a further hydroxylation of the ethyl
group at the aromatic side chain occurred. P4 and P5
were identified as the degradation products in actino-
mycete cultures (Krause et al., 1985). The hydroxylated
compounds have higher water solubility and are more
easily degraded. Thus, hydroxylation occurring during
photodegradation of metolachlor is associated with
detoxification.
LITERATURE CITED
Atkins, P. W. The rates of chemical reactions. In Physical
Chemistry; W. H. Freeman: New York, 1994; pp 870-872.
Bohn, H.; McNeal, B.; O’Connor, G. Anion and molecular
retention. In Soil Chemistry; Wiley: New York, 1979; pp
171-187.
Maguire, R. J .; Tkacz, R. J . Occurrence of pesticides in the
Yamasaka River, Quebec. Arch. Environ. Contam. Toxicol.
1993, 25, 220-226.
Bouchard, D. C.; Lavy, T. L.; Marx D. B. Fate of metribuzin,
metolachlor and fluometuron in soil. Weed Sci. 1982, 30,
629-632.
Chesters, G.; Simsiman, G. V.; Levy, J .; Alhajjar, B. L.;
Fathulla, R. N.; Harkin, J . M. Environmental fate of alachlor
and metolachlor. In Reviews of Environmental Contamina-
tion and Toxicology; Ware, G. W., Ed.; Springer-Verlag:
New York, 1989; Vol. 10, Chapter 1.
Frank, R.; Logan, L. Pesticides and industrial chemical
residues at the mouth of the Grand, Saugeen and Thames
Rivers, Ontario, Canada, 1981-1985. Arch. Environ. Con-
tam. Toxicol. 1988, 17, 741-754.
Fujihira, M.; Satoh,Y.; Osa, T. Heterogeneous photocatalytic
oxidation of aromatic compounds on TiO2. Nature 1981, 293,
206-208.
Gamble, D. S. Potentiometric titration of fulvic acid: equiva-
lence point calculations and acidic functional groups. Can.
J . Chem. 1972, 50, 2680-2690.
Katagi, T. Molecular approaches to the photolysis of organo-
phosphorus insecticide fenitrothion. J . Agric. Food Chem.
1989, 37, 1124-1128.
Katagi, T. Photoinduced oxidation of the organophosphorus
fungicide tolclofos-methyl on clay minerals. J . Agric. Food
Chem. 1990, 38, 1595-1600.
Katagi, T. Photodegradation of the pyrethroid insecticide
esfenvalerate on soil, clay minerals and humic acid surfaces.
J . Agric. Food Chem. 1991, 39, 1351-1356.
Katagi, T. Photodegradation of 3-phenoxybenzoic acid in water
and on solid surfaces. J . Agric. Food Chem. 1992, 40, 1269-
1274.
Katagi, T. Photodegradation of esfenvalerate in clay suspen-
sions. J . Agric. Food Chem. 1993, 41, 2178-2183.
Khan, S. U.; Schnitzer, M. UV irradiation of atrazine in
aqueous fulvic acid solution. J . Environ. Sci. Health B13
1978, 3, 299-310.
Kochany, J . Effects of iron(III) and manganese(II) ions on the
aquatic photodegradation rate of bromoxynil (3,5-dibromo-
4-hydroxybenzonitrile) herbicide. Chemosphere 1992, 3,
261-270.
Kochany, J .; Maguire, R. J . Sunlight photodegradation of
metolachlor in water. J . Agric. Food Chem. 1994, 42, 406-
412.
McGahen, L. L.; Tiedje, M. Metabolism of two new acylanilide
herbicides, Antor herbicide (H-22234) and Dual (meto-
lachlor) by the soil fungus Chaetomium globosum. J . Agric.
Food Chem. 1978, 26, 414-419.
Miller, G. C.; Zepp, R, G. Photoreactivity of aquatic pollutants
sorbed on suspended sediments. Environ. Sci. Technol.
1979a , 13, 860-863.
Miller, G. C.; Zepp, R. G. Effects of suspended sediments on
photolysis rates of dissolved pollutants. Water Res. 1979b,
13, 453-459.
Obrigawitch, T.; Hons, F. M.; Abernathy, J . R.; Gipson, J . R.
Adsorption, desorption and mobility of metolachlor in soils.
Weed Sci. 1981, 29, 332-336.
Oliver, G. J .; Cosgrove, E. G.; Carey, J . H. Effect of suspended
sediments on the photolysis of organics in water. Environ.
Sci. Technol. 1979, 13, 1075-1077.
Peter, J . C.; Weber, J . B. Adsorption, mobility, and efficacy of
alachlor and metolachlor as influenced by soil properties.
Weed Sci. 1985, 33, 874-881.
Richards, R. P.; Baker, D. B. Pesticide concentration patterns
in agricultural drainage networks in the Lake Erie basin.
Environ. Toxicol. Chem. 1993, 12, 13-26.
Schnitzer, M.; Skinner, S. I. M. Alkali verses acid extraction
of soil organic matter. Soil Sci. 1968, 105, 392-396.
Weber, J . B.; Peter, C. J . Adsorption, bioactivity and evaluation
of soil tests for alachlor, acetochlor and metolachlor. Weed
Sci. 1982, 30, 14-20.
Wood, L. S.; Scott, H. D.; Marx, D. B; Lavy, T. L. Variability
in sorption coefficients of metolachlor on a captina silt loam.
J . Environ. Qual. 1987, 16, 251-256.
Zepp, R. G.; Schlotzhauer, P. F. Effects of equilibrium time
on photoreactivity of the pollutant DDE sorbed on natural
sediments. Chemosphere 1981, 10, 453-460.
Received for review February 22, 1996. Revised manuscript
received August 14, 1996. Accepted September 13, 1996.X
J F960123W
Kozak, J .; Weber, J . B.; Sheets, T. J . Adsorption of prometryn
and metolachlor by selected soil organic matter fractions.
Soil Sci. 1983, 136, 94-10.
X Abstract published in Advance ACS Abstracts, No-
vember 1, 1996.