Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
process (SI Schemes S9-S11). On the basis of these control The authors thank DAE-BRNS, India (Young Scientist Research
experiments and mechanistic studies, a probable catalytic pathway Award to D. B., 37(2)/20/33/2016-BRNS). IIT Roorkee (SMILE-32)
DOI: 10.1039/D0CC02261F
for the Ni-catalyzed α-alkylation of nitrile with alcohols is presented and FIST-DST are gratefully acknowledging for instrument facilities.
in Scheme 5e. Primarily, a Ni-catalyzed dehydrogenation of alcohol S. B. thank INSPIRE (DST) and A. B. thank IIT-R for financial support.
gave aldehyde 2a’ via Ni-alkoxy species B following -hydride
elimination. Thereafter, condensation of aldehyde 2a’ with 1a
resulted the intermediate species 3a’, which subsequently
Conflicts of interest
There are no conflicts to declare.
Notes and references
undergoes chemo-selective hydrogenation to the product 3a by in
(1) (a) F. F. Fleming, Nat. Prod. Rep., 1999, 16, 597; (b) F. F. Fleming, L.
situ generated Ni-H species. Notably, the overall process released
Yao, P. C. Ravikumar, L. Funk, and B. C. Shook, J Med Chem. 2010. 53,
7902.
only water as side product, rendering it sustainable.10
(2) (a) G. Guillena, D. J. Ramon and M. Yus, Chem. Rev., 2010, 110,
1611; (b) R. H. Crabtree, Chem. Rev., 2017, 117, 9228.
(3) (a) A. J. A. Watson and J. M. J. Williams, Science, 2010, 329, 635; (b)
K. Barta and P. C. Ford, Acc. Chem. Res., 2014, 47, 1503.
(4) (a) R. M. Bullock, Catalysis without Precious Metals, Eds.: Wiley-VCH,
Weinheim, 2010; (b) R. J. M. K. Gebbink and M.-E. Moret, Non-Noble
Metal Catalysis, John Wiley & Sons, 2019; (c) A. Corma, J. Navas and M.
J. Sabater, Chem. Rev., 2018, 118, 1410-1459; (d) T. Irrgang and R.
Kempe, Chem. Rev., 2019, 119, 2524.
(5) S. Werkmeister, C. Bornschein, K. Junge and M. Beller, Chem. Eur. J.,
2013, 19, 4437.
(6) S. Chakraborty, U. K. Das, Y. B. David and D. Milstein, J. Am. Chem.
Soc., 2017, 139, 11710.
(7) (a) R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit and N. Tongpenyai,
Tetrahedron Lett. 1981, 22, 4107; (b) K. Motokura, D. Nishimura, K.
Mori, T. Mizugaki, K. Ebitani and K. A. Kaneda, J. Am. Chem. Soc., 2004,
126, 5662; (c) C. Löfberg, R. Grigg, M. A. Whittaker, A. Keep and A.
Derrick, J. Org. Chem., 2006, 71, 8023; (d) K. Motokura, N. Fujita, K.
Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa and K. Kaneda, Chem. Eur. J.,
2006, 12, 8228; (e) M. Morita, Y. Obora and Y. Ishii, Chem. Commun.,
2007, 2850; (f) H. W. Cheung, J. Li, W. Zheng, Z. Zhou, Y. H. Chiu, Z. Lin
and C. P. Lau, Dalton Trans. 2010, 39, 265; (g) B. Anxionnat, D. P.
Gomez, Ricci, G. and J. Cossy, J. Org. Lett., 2011, 13, 4084; (h) T.
Sawaguchi and Y. Obora, Chem. Lett., 2011, 40, 1055; (i) T. Kuwahara, T.
Fukuyama and I. Ryu, Chem. Lett., 2013, 42, 1163; (j) S. Thiyagarajan
and C. Gunanathan, ACS Catal., 2017, 7, 5483; (k) J. Li, Y. Liu, W. Tang,
D. Xue, C. Li, J. Xiao and C. Wang, Chem. −Eur. J., 2017, 23, 14445; (l) M.
L. Buil, M. A. Esteruelas, J. Herrero, S. Izquierdo, I. M. Pastor and M. Yus,
ACS Catal., 2013, 3, 2072. (m) Z.-H. Zhu, Y. Li, Y.-B. Wang, Z.-G. Lan, X.
Zhu, X.-Q. Hao and M.-P. Song, Organometallics, 2019, 38, 2156.
(8) (a) W. Ma, S. Cui, H. Sun, W. Tang, D. Xue, C. Li, J. Fan, J. Xiao and C.
Wang, Chem.−Eur. J., 2018, 24, 13118; (b) A. Jana, B. C. Reddy and B.
Maji, ACS Catal., 2018, 8, 9226; (c) J. C. Borghs, M. A. Tran, J. Sklyaruk,
M. Rueping and O. El-Sepelgy, J. Org. Chem., 2019, 84, 7927; (d) B. C.
Roy, I. A. Ansari, S. A. Samim, and S. Kundu, Chem. Asian J. 2019, 14,
2215.
5a. Evidence for olefin intermediate and catalytic deuteration studies
CN
CN
standard conditions
Ph
Ph
Ph
Ph
OH
Ph
t-BuOK (50 mol%), 20 h
3a
CN
Ph
Ph
65% yield
2a
3a'
CN
(61%)
H/D
D
D
standard conditions
Ph
(43%)
Ph
t-BuOK (50 mol%), 20 h
Ph
OH
43% yield
3a'
3a-d2
D/H
2a-d2 (92% D)
5b. Evidence for participation of Ni-H species
CN
H
Cy3
P
H
CN
Ph
K2CO3 (0.029 mmol)
Ni
Ph
Ph
Br
PCy3
toluene d8, 140 °C, 36 h
3a
Ph
H
Cat B-H (0.058 mmol)
Cat B-H (0.116 mmol)
51% yield
3a' (0.058 mmol)
94 % yield
CN
5c. Parallel and competetive studies
standard conditions
t-BuOK (50 mol%), 20 h
84% yield
(i)
Ph
Ph
Ph
OD
Ph
CN
Ph
3a
2a-d1 (98% D)
1a
1a
CN
standard conditions
D
D
(18%)
H/D
Ph
Ph
CN
t-BuOK (50 mol%), 20 h
(ii)
Ph
OH
PH/PD = 1.6
81% yield
2a-d2 (92% D)
3a-d2
(40%)
Ph
D/H
CN
D
D
standard conditions
H/D (30%)
Ph
Ph
CN
2a
Ph
OH
t-BuOK (50 mol%), 20 h
(iii)
1a
44% yield
2a-d2 (92% D)
3a-d2
CN
D/H (85%)
Ph
D
D
standard conditions
Ph
OH
H/D (75%)
Ph
t-BuOK (50 mol%), 20 h
Ph
CN
2a
(iv)
1a-d2 (97% D)
5d. Control experiments
Ph CN
91% yield
D/H
3a-d2
1a
75%
1a
5% 0%
(66%)
3e
20% 5%
standard conditions
10 h
3e'
Base
Catalyst
Catalyst
Ar
OH
1a
2e
Ar
O
standard conditions
Ph
CN
3e
3e'
Base
2e'
OMe
1a
CN
18 h
95%
Ar= 4-OMePh
97% <2% 1%
80% 0% 17%
3e'
Ph
5e. Proposed catalytic cycle
Ph
CN
overall reaction
CN
1a
3a
R
[LnNi]
Ph
Ph
OH
2a
A
[LnNi-OBn]
hydrogenation
B
dehydrogenation
via -hydride elimination
(9) P. V. Ananikov, ACS Catal., 2015, 5, 1964.
CN
3a'
isolated
C
(10) (a) M. Vellakkaran, K. Singh and D. Banerjee, ACS Catal., 2017, 7,
8152; (b) K. Singh, M. Vellakkaran and D. Banerjee, Green Chem., 2018,
20, 2250; (c) J. Das, K. Singh, M. Vellakkaran, and D. Banerjee, Org. Lett.,
2018, 20, 5587; For recent selected examples using different metals,
see: (d) Z. Tan, H. Jiang and M. Zhang, Chem. Commun., 2016, 52, 9359;
(e) C.-S. Wang, T. Roisnel, P. H. Dixneuf and J.-F. Soule, Org. Lett., 2017,
19, 6720.
R
[LnNi-H]
Ph
isolated
detected by
GC-MS/1H-NMR
R
O
2a'
base
trapped using 2a-d2
H2
O
condensation
1a
detected using 1H-NMR
Scheme 5. Preliminary mechanistic studies and control experiments (See. SI).
In conclusion, herein we demonstrated the first Ni-catalyzed
chemo-selective alkylation of nitriles to a series of branched
products using primary alcohols. A simple and inexpensive Ni-
catalyst and 1,10-phenanthroline ligand enables to a vareity of
functionalized secondary nitriles in up to 90% yield. Alkyl, alkoxy,
halides (F, Cl, Br), trifluoromethyl, pyridine, furfural, dioxolone,
cyclopropyl group including allylic and unsaturated alcohols could
be used. Mechanistic studies using defined Ni-H species; deuterium
labelling, kinetics experiments and determination of the generation
of water were performed to establish the hydrogen borrowing
process and involvement of the benzylic C−H/D bond of alcohols.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins