Journal of the American Chemical Society
Article
D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck,
V.; De Kimpe, N.; Ha, H.-J. Chem. Soc. Rev. 2012, 41, 643.
(5) For a recently published review on this topic, see: Huang, C. Y.;
Doyle, A. G. Chem. Rev. DOI: 10.1021/cr500036t.
CONCLUSIONS
■
In summary, we have developed the first ligand-controlled,
nickel-catalyzed cross-coupling of unactivated aliphatic
N-tosylaziridines with aliphatic organozinc reagents. The
reaction protocol displays complete regioselectivity for reaction
at the less hindered C−N bond, and the products are furnished
in good to excellent yield for a broad selection of substrates.
Moreover, the use of the very air-sensitive Ni(cod)2 was
avoided by the development of an air-stable nickel(II) chloride/
ligand precatalyst that can be handled and stored outside a
glovebox. Besides improving the practicality of the protocol, the
exclusion of 1,5-cyclooctadiene from the system also improved
the reactivity of the catalyst. Finally, mechanistic investigations,
including deuterium-labeling studies, show that the reaction
proceeds with overall inversion of configuration at the terminal
position of the aziridine by way of aziridine ring opening
(SN2-type) by Ni (inversion), transmetalation (retention), and
reductive elimination (retention). These results are in contrast
to the previously reported nickel-catalyzed reactions, in which
scrambling of the stereoconfiguration at the terminal carbon
atom is observed.
(6) (a) Alper, H.; Uros, F.; Smith, D. J. H. J. Am. Chem. Soc. 1983,
105, 6737. (b) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989,
111, 931. (c) Lu, S.-M.; Alper, H. J. Org. Chem. 2004, 69, 3558.
(7) For a stoichiometric Ni(CO)4/LiI-mediated aziridine carbon-
ylation, see: (a) Chamchaang, W.; Pinhas, A. R. J. Org. Chem. 1990, 55,
2943. For cobalt-catalyzed carbonylation reactions of aziridines, see:
(b) Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.
(c) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64,
518. (d) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew.
Chem., Int. Ed. 2002, 41, 2781.
(8) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 2890.
(9) For a review on azametallacyclobutanes, see: Dauth, A.; Love, J.
A. Dalton Trans. 2012, 41, 7782.
(10) (a) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2006, 128, 15415.
For a related study on the Pd-catalyzed isomerization of N-
tosylaziridines to N-tosylimines, see: (b) Wolfe, J. P.; Ney, J. E. Org.
Lett. 2003, 5, 4607.
(11) Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
(12) For a Rh(III)-catalyzed C−C coupling between arenes and
arylaziridines by C−H activation, see: Li, X. W.; Yu, S. J.; Wang, F.;
Wan, B. S.; Yu, X. Z. Angew. Chem., Int. Ed. 2013, 52, 2577.
(13) For a review on the effect of olefins on transition-metal-
catalyzed cross-coupling reactions, see: Johnson, J. B.; Rovis, T. Angew.
Chem., Int. Ed. 2008, 47, 840.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data (1H, 13C, 19F as
applicable) for all new compounds. This material is available
(14) Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc.
2013, 135, 13605.
(15) Duda, M. L.; Michael, F. E. J. Am. Chem. Soc. 2013, 135, 18347.
(16) Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. J. Am.
Chem. Soc. 2014, 136, 8544.
(17) For a review on alkyl-organometallic reagents in cross-coupling
reactions, see: Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011,
111, 1417.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(18) For the synthesis of (bpy)Ni(cod) complex, see: Schwalbe, M.;
The authors declare no competing financial interest.
Walther, D.; Schreer, H.; Langer, J.; Gorls, H. J. Organomet. Chem.
̈
2006, 691, 4868.
ACKNOWLEDGMENTS
■
(19) (a) Organozinc Reagents, A Practical Approach; Knochel, P.,
Jones, P., Eds.; Oxford: New York, 1999. (b) Knochel, P.; Singer, R. D.
Chem. Rev. 1993, 93, 2117.
(20) Other mechanisms such as retro-[2 + 2] to form a nickel-nitrene
and an alkene, radical cleavage, or direct deptronotion by the
organozinc reagent cannot be excluded.
(21) Both the Cl- and Br-opened aziridine byproducts were observed.
It is anticipated that the source of the chloride could be chloride salts
(LiCl) in the organozinc reagents, from the precatalyst, or from DCE
when present.
This work is dedicated to the memory of Gregory L. Hillhouse.
K.L.J. and E.A.S. would like to thank the Lundbeck Foundation
for a postdoctoral fellowship and the NSF for a Graduate
Research Fellowship, respectively. Li Li (MIT) is acknowledged
for HRMS data, which were obtained on an instrument
purchased with the assistance of NSF Grant CHE-0234877.
NMR spectroscopy was carried out on instruments purchased
in part with funds provided by the NSF (CHE-9808061 and
CHE-8915028).
REFERENCES
■
(22) For an overview of the development of nickel(II) precatalysts,
see: Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(23) For representative examples of the syntheses and applications of
Ni(II) precatalysts, see: (a) Wolfe, J. P.; Buchwald, S. L. J. Am. Chem.
Soc. 1997, 119, 6054. (b) Ge, S.; Hartwig, J. F. Angew. Chem., Int. Ed.
2012, 51, 12837. (c) Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc.
2013, 135, 1585. (d) Park, N. H.; Teverovskiy, G.; Buchwald, S. L.
(1) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509,
299.
(2) (a) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346,
1525. (b) Hu, X. Chem. Sci. 2011, 2, 1867.
(3) For representative examples of nickel-mediated C−N bond
activation, see: (a) Wenkert, E.; Han, A.-L.; Jenny, C-.H. J. Chem. Soc.,
Chem. Commun. 1988, 975. (b) Trost, B. M.; Spagnol, M. D. J. Chem.
Soc., Perkin Trans. 1 1995, 2083. (c) Blakey, S. B.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2003, 125, 6046. (d) Maity, P.; Shacklady-McAtee,
D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc.
2013, 135, 280. (e) Tobisu, M.; Nakamura, K.; Chatani, N. J. Am.
Chem. Soc. 2014, 136, 5587.
Org. Lett. 2014, 16, 220. (e) Standley, E. A.; Smith, S. J.; Muller, P.;
̈
Jamison, T. F. Organometallics 2014, 33, 2012.
(24) (a) Pfeiffer, P.; Tappermann, F. Z. Anorg. Allg. Chem. 1933, 215,
273. (b) Jaeger, F. M.; Dijk, J. A. Z. Anorg. Allg. Chem. 1936, 227, 273.
(c) Fontaine, F. G. Acta Crystallogr., Sect. E: Struct. Rep. Online 2001,
57, m270. (d) Ikotun, O. F.; Ouellette, W.; Lloret, F.; Julve, M.; Doyle,
R. P. Eur. J. Inorg. Chem. 2007, 2083. (e) Awad, D. J.; Conrad, F.;
(4) (a) Aziridines and Epoxides in Organic Synthesis; Yudin, A., Ed.;
Wiley-VCH: Weinheim, Germany, 2006. (b) Tanner, D. Angew.
Chem., Int. Ed. Engl. 1994, 33, 599. (c) Hu, X. E. Tetrahedron 2004, 60,
́
2701. (d) Lu, P. Tetrahedron 2010, 66, 2549. (e) Stankovic, S.;
11151
dx.doi.org/10.1021/ja505823s | J. Am. Chem. Soc. 2014, 136, 11145−11152