10.1002/anie.201913743
Angewandte Chemie International Edition
COMMUNICATION
Giri, J. Am. Chem. Soc. 2017, 139, 10653; c) J. Derosa, V. T. Tran, M.
N. Boulous, J. S. Chen, K. M. Engle, J. Am. Chem. Soc. 2017, 139,
10657; d) P. Gao, L.-A. Chen, M. K. Brown, J. Am. Chem. Soc. 2018,
140, 10653; e) J. Derosa, R. Kleimans, V. T. Tran, M. K. Kurunananda,
S. R. Wisniewski, M. D. Eastgate, K. M. Engle, J. Am. Chem. Soc.
[7]
[8]
For Cu-catalyzed enantioselective alkene 1,2-carboamination, see: a)
W. Zeng, S. R. Chemler, J. Am. Chem. Soc. 2007, 129, 12948; b) L.
Miao, I. Haque, M. R. Manzoni, W. S. Tham, S. R. Chemler, Org. Lett.
2010, 12, 4739; c) B. J. Casavant, A. S. Hosseini, S. R. Chemler, Adv.
Synth. Catal. 2014, 356, 2697; d) Z. Li, M. Zhang, Y. Zhang, S. Liu, J.
Zhao, Q. Zhang, Org. Lett. 2019, 21, 5432.
2018,
140,
17878.
For
Ni-catalyzed
reductive
alkene
dicarbofunctionalization, see: f) Y. Peng, X.-B. Xu, J. Xiao, Y.-W. Wang,
Chem. Commun. 2014, 50, 472; g) Y. Peng, J. Xiao, X.-B. Xu, S.-M.
Duan, L. Ren, Y.-L. Shao, Y.-W. Wang, Org. Lett. 2016, 18, 5170; h) A.
García-Domínguez, Z. Li, C. Nevado, J. Am. Chem. Soc. 2017, 139,
6835; i) X. Zhao, H.-Y. Tu, L. Guo, S. Zhu, F.-L. Qing, L. Chu, Nat.
Commun. 2018, 9, 3488; j) Y. Kuang, X. Wang, D. Anthony, T. Diao,
Chem. Commun. 2018, 54, 2558; k) J. Xiao, X.-W. Cong, G.-Z. Yang,
Y.-W. Wang, Y. Peng, Org. Lett. 2018, 20, 1651; l) Y. Jin, C. Wang,
Chem. Sci. 2019, 10, 1780.
For Ni-catalyzed racemic version of alkene 1,2-carboamination, see: a)
L. Wang, C. Wang, Org. Chem. Front. 2018, 5, 3476; b) S. Zheng, Á.
Gutiérrez-Boent, G. A. Molander, Chem. 2019, 5, 339; c) V. A. van der,
Pury, J. Derosa, K. M. Engle, ACS Catal. 2019, 9, 224. Recently,
Sarlah achieved
a
formal enantioselective dearomative 1,2-
carboamination of benzene: d) L. W. Hernandez, U. Klöckner, J.
Pospech, L. Hauss, D. Sarlah, J. Am. Chem. Soc. 2018, 140, 4503.
For selected reviews, see: a) S. Z. Tasker, E. A. Standley, T. F.
Jamison, Nature 2014, 509, 299; b) M. R. Netherton, G. C. Fu, Adv.
Synth. Catal. 2004, 346, 1525.
[9]
[5]
For recent examples on Ni-catalyzed enantioselective alkene
dicarbofunctionalization, see: a) Y. Nakao, S. Ebata, A. Yada, T.
Hiyama, M. Ikawa, S. Ogoshi, J. Am. Chem. Soc. 2008, 130, 12874; b)
M. P. Watson, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 12594; c)
H. Cong, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 3788; d) X. Qin, M.
W. Y. Lee, J. S. Zhou. Angew. Chem. Int. Ed. 2017, 56, 12723; e) H.
Yoon, A. D. Marchese, M. Lautens J. Am. Chem. Soc. 2018, 140,
10950; f) K. Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018,
140, 12364; g) D. Anthony, Q. Lin, J. Baudet, T. Diao, Angew. Chem.
Int. Ed. 2019, 58, 3198; h) Y. Ping, K. Wang, Q. Pan, Z. Ding, Z. Zhou,
Y. Guo, W. Kong, ACS Catal. 2019, 9, 7335; i) Y. Jin, C. Wang, Angew.
Chem. Int. Ed. 2019, 58, 6722; j) Z.-X. Tian, J.-B. Qiao, G.-L. Xu, X.
Pang, L. Qi, W.-Y. Ma, Z.-Z. Zhao, J. Duan, Y.-F. Du, P. Su, X.-Y. Liu,
X.-Z. Shu, J. Am. Chem. Soc. 2019, 141, 7637; k) T. Ma, Y. Chen, Y. Li,
Y. Ping, W. Kong, ACS Catal. 2019, 9, 9127. For recent examples on
Cu-catalyzed enantioselective alkene difunctionalization, see: a) R. Zhu,
S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 12462; b) N. Matsuda, K.
Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2013, 135, 4934; c) W.
You, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 14578. For recent
examples on Pd-catalyzed enantioselective alkene difunctionalization,
see: a) W. Kong, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137,
16028; b) R. C. Carmona, O. D. Köster, C. R. D. Correia, Angew. Chem.
Int. Ed. 2018, 57, 12067; c) R.-R. Liu, Y.-G. Wang, Y.-L. Li, B.-B.
Huang, R.-X. Liang, Y.-X. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475;
d) C. Shen, N. Zeidan, Q. Wu, C. B. J. Breuers, R.-R. Liu, Y.-X. Jia, M.
Lautens, Chem. Sci. 2019, 10, 3118; e) A. Whyte, K. I. Burton, J. Zhang,
M. Lautens, Angew. Chem. Int. Ed. 2018, 57, 13927; f) H. Yoon, A. D.
Marchese, M. Lautens, J. Am. Chem. Soc. 2018, 140, 10950; g) Z. Bai,
S. Zheng, Z. Bai, F. Song, H. Wang, Q. Peng, G. Chen, G. He, ACS
Catal. 2019, 9, 6502; h) Z.-M. Zhang, B. Xu, L. Wu, L. Zhou, D. Ji, Y.
Liu, Z. Li, J. Zhang, J. Am. Chem. Soc. 2019, 141, 8110; i) Z.-M. Zhang,
B. Xu, L. Wu, Y. Wu, Y. Qian, L. Zhou, Y. Liu, J. Zhang, Angew. Chem.
Int. Ed. 2019, 58, 14653.
[10] For selected reviews on transition-metal catalyzed electrophilic
amination, see: a) T. J. Barker, E. R. Jarvo, Synthesis 2011, 24, 3954;
b) M. Corpet, C. Gosmini, Synthesis 2014, 46, 2258; For selected
examples, see: c) A. M. Berman, J. S. Johnson, J. Am. Chem. Soc.
2004, 126, 5680; d) A. M. Berman, J. S. Johnson, Synlett 2005, 11,
1799; e) T. J. Barker, E. R. Jarvo, J. Am. Chem. Soc. 2009, 131,
15598; f) R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, J. Am.
Chem. Soc. 2012, 134, 6571; g) N. Matsuda, K. Hirano, T. Satoh, M.
Miura, Angew. Chem. Int. Ed. 2012, 51, 3642; h) S. Zhu, N. Niljianskul,
S. L. Buchwald, J. Am. Chem. Soc. 2013, 135, 15746; i) Y. Miki, K.
Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 10830; j)
D. Zhu, G. Yang, J. He, L. Chu, G. Chen, W. Gong, K. Chen, M. D.
Eastgate, J.-Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 2497; k) M. P.
Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. Ma, L. Kürti, J. R.
Falck, Science 2016, 353, 1144.
[11] It is believed that Ni(III) amido species could undergo facile reductive
elimination: a) K. Koo, G. L. Hillhouse, Organometallics 1995, 14, 4421;
b) B. L. Lin, C. R. Clough, G. L. Hillhouse, J. Am. Chem. Soc. 2002,
124, 2890; c) L. Ilies, T. Matsubara, E. Nakamura, Org. Lett. 2012, 14,
5570; d) S. Z. Tasker, T. F. Jamison, J. Am. Chem. Soc. 2015, 137,
9531; e) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A.
DiRocco, I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science
2016, 353, 279; f) M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette,
B. Aquila, S. Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem.
Int. Ed. 2016, 55, 13219.
[12] CCDC 1955504 (3a) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[13] CoPc is proposed to stabilize the alkylnickel(I) intermediates. For
examples of CoPc as
a co-catalyst to facilitate the Ni-catalyzed
reductive cross-electrophile coupling, see: a) L. K. G. Ackerman, L. L.
Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci. 2015, 6, 1115; b) J.
L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am. Chem.
Soc. 2018, 140, 139.
[6]
For Pd-catalyzed enantioselective alkene 1,2-carboamination, see: a) D.
N. Mai, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 12157; b) B. A.
Hopkins, J. P. Wolfe, Angew. Chem. Int. Ed. 2012, 51, 9886; c) N. R.
Babij, J. P. Wolfe, Angew. Chem. Int. Ed. 2013, 52, 9247; d) B. A.
Hopkins, J. P. Wolfe, Chem. Sci. 2014, 5, 4840; e) D. R. White, J. T.
Hutt, J. P. Wolfe, J. Am. Chem. Soc. 2015, 137, 11246; f) Z. J. Garlets,
K. R. Parenti, J. P. Wolfe, Chem. Eur. J. 2016, 22, 5919; g) V. Bizet, G.
M. Borrajo-Calleja, C. Besnard, C. Mazet, ACS Catal. 2016, 6, 7183; h)
Z. J. Garlets, J. P. Wolfe, Synthesis 2018, 50, 4444.
[14] Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science 2015, 349,
62.
[15] With a Bn-BiOX ligand, arylnickel(II) could be reduced into arylnickel(I)
in situ, the aniline product (5) could be obtained (see SI for details).
This article is protected by copyright. All rights reserved.