Communication
In summary, we have established novel strategies for cobalt-
catalyzed syntheses of biaryl tetrazoles through CÀH activation.
Thus, low-valent cobalt catalysts derived from NHCs enabled
first direct arylations by weak coordination. The arylated ben-
zamides were formed with high site- and chemo-selectivities
as well as ample scope, and provided expedient access to
biaryl tetrazoles—key scaffolds of ARB blockbuster drugs.
Mechanistic studies were suggestive of a reversible CÀH cobal-
tation and a rate-determining reductive elimination. The power
of the user-friendly cobalt catalysis was further illustrated by
unprecedented tetrazole-assisted CÀH activations with 3d tran-
sition metal complexes.
[6] Recent authorative reviews on the use of inexpensive first-row transi-
tion metal catalysts for CÀH bond functionalization: a) E. Nakamura, T.
Hatakeyama, S. Ito, K. Ishizuka, L. Ilies, M. Nakamura, Org. React. 2014,
83, Chapter 1, 1–209; b) J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org.
2009, 4087–4109, and references therein.
[9] Selected recent examples of cobalt-catalyzed CÀH functionalizations:
a) D.-G. Yu, T. Gensch, F. de Azambuja, S. Vasquez-Cespedes, F. Glorius, J.
Am. Chem. Soc. 2014, 136, 17722–17725; b) J. Li, L. Ackermann, Angew.
Chem. Int. Ed. 2015, 54, DOI: 10.1002/anie.201409247; c) J. R. Hummel,
J. A. Ellman, J. Am. Chem. Soc. 2015, 137, 490–498; d) P. Patel, S. Chang,
ACS Catal. 2015, 5, 853–858; e) L. Grigorjeva, O. Daugulis, Org. Lett.
2014, 16, 4684–4687; f) L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed.
2014, 53, 10209–10212; Angew. Chem. 2014, 126, 10373–10376; g) B.
Wu, M. Santra, N. Yoshikai, Angew. Chem. Int. Ed. 2014, 53, 7543–7546;
Angew. Chem. 2014, 126, 7673–7676; h) H. Ikemoto, T. Yoshino, K.
Sakata, S. Matsunaga, M. Kanai, J. Am. Chem. Soc. 2014, 136, 5424–
5431; i) B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal.
2014, 356, 1491–1495; j) Z. Ding, N. Yoshikai, Angew. Chem. Int. Ed.
2013, 52, 8574–8578; Angew. Chem. 2013, 125, 8736–8740; k) P.-S. Lee,
N. Yoshikai, Angew. Chem. Int. Ed. 2013, 52, 1240–1244; Angew. Chem.
2013, 125, 1278–1282; l) T. Andou, Y. Saga, H. Komai, S. Matsunaga, M.
Kanai, Angew. Chem. Int. Ed. 2013, 52, 3213–3216; Angew. Chem. 2013,
125, 3295–3298; m) T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai,
Angew. Chem. Int. Ed. 2013, 52, 2207–2211; Angew. Chem. 2013, 125,
2263–2267; n) Z. Ding, N. Yoshikai, Angew. Chem. Int. Ed. 2012, 51,
4698–4701; Angew. Chem. 2012, 124, 4776–4779; o) P.-S. Lee, T. Fujita,
N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 17283–17295; p) K. Gao, N.
Yoshikai, J. Am. Chem. Soc. 2011, 133, 400–402; q) K. Gao, P.-S. Lee, T.
Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249–12251.
Acknowledgements
Generous support by the European Research Council under
the European Community’s Seventh Framework Program (FP7
2007–2013)/ERC Grant agreement no. 307535, and the Chinese
Scholarship Program (fellowship to J.L.) is gratefully acknowl-
edged.
Keywords: amides · arylation · CÀH activation · cobalt ·
tetrazoles
[2] For authoritative contributions, see: a) J. H. Kim, J. H. Lee, S. H. Paik,
De Caterina, A. R. Harper, F. Cuculi, Vasc. Health Risk Manage. 2012, 8,
299–305, and references therein; c) P. Bꢁhlmayer, P. Furet, L. Criscione,
M. de Gasparo, S. Whitebread, T. Schmidlin, R. Lattmann, J. Wood,
K. L. Flanagan, T.-B. Chen, S. S. O’Malley, G. J. Zingaro, S. D. Kivlighn,
P. K. S. Siegl, V. J. Lotti, R. S. L. Chang, W. J. Greenlee, J. Med. Chem.
2349; f) J. V. Duncia, A. T. Chiu, D. J. Carini, G. B. Gregory, A. L. Johnson,
W. A. Price, G. J. Wells, P. C. Wong, J. C. Calabrese, P. M. W. M. Timmer-
[13] S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal.
2014, 356, 1461–1479.
[3] Representative recent Valsartan syntheses: a) G. Wang, B. Sun, C. Peng,
16, 682–686; c) K. Senthil, S. B. Reddy, B. K. Sinha, D. Mukkanti, R. Dan-
dala, Org. Process Res. Dev. 2009, 13, 1185–1189; d) U. Beutler, M.
Boehm, P. C. Fuenfschilling, T. Heinz, J.-P. Mutz, U. Onken, M. Mueller, W.
Kumar, G. N. Mehta, Beilstein J. Org. Chem. 2010, 6, 27; f) L. J. Goossen,
[4] Representative recent reviews on CÀH activation: a) S. Tani, T. N.
11222; j) O. Daugulis, Top. Curr. Chem. 2010, 292, 57–84; k) D. A. Colby,
3272; m) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009,
[15] Representative examples: a) [Cu]: L. Ackermann, H. K. Potukuchi, D.
ences therein.
Pure Appl. Chem. 2010, 82, 1403–1413; c) L. Ackermann, Synlett 2007,
507–526.
[18] Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai, J.-Q. Yu, Nature 2014,
[19] For recent examples, see: a) S. N. Rao, T. Ravisankar, J. Latha, K. S. Babu,
Pharma Chem. 2012, 4, 1093–1103b) M. Seki, M. Nagahama, J. Org.
[20] M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
[21] S. Dꢂez-Gonzꢃlez, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612–
3676.
&
&
Chem. Eur. J. 2015, 21, 1 – 6
4
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!