COMMUNICATIONS
Table 2. Recyclability of 13 in the RCM of 30.
solution-phase activitywith high and convenient recyclability
without requiring the purchase of often expensive solid-
support resins. The catalyst is prepared from inexpensive
starting materials in a straightforward manner; the generation
of the solid-support and attachment of the ruthenium moiety
is possible in one convenient step through sequential ROMP
and CM. The products from metathesis reactions involving
these catalysts also contain unparalleled low levels of residual
ruthenium. The conceptuallynovel catalyst 13 represents a
balance between the high activityof suitablysubstituted
analogues of 6, and the recyclability of 5; possible through
ligand design and stoichiometry.
Studies on the exploitation of these flexible systems in new
metathesis applications are underway. One example is the
incorporation of a modified fluorescence marker into the
catalyst to identify trace quantities of polymer in the reaction
products. Investigation of the product bymass spectrometryis
another option. The results of these and other investigations
will be reported in due course.
Cycle
t [h]
Conversion [%][a]
1
2
3
4
5
6
7
8
1
1
1
1
1
2
4
72
> 98
> 98
> 98
> 98
> 98
> 98
> 98
75
1
[a] Determined by H NMR spectroscopic analysis.
[7]
Total-reflection X-rayfluorescence (TXRF) analysis
of
the products after catalyst separation indicated that a
maximum of 0.004% ruthenium was present in each of the
first four cycles. This value is approximately an order of
magnitude lower than that of contemporaryliterature systems
for the removal of ruthenium after the reaction[3,8] and even
two orders of magnitude lower than that of the best previously
reported polymer-bound catalysts.[3] It seems likely, therefore,
that ruthenium remains attached to the polymer even after
catalyst deactivation. Importantly, a ruthenium-saturated
analogue of 13 (i.e. all styrene moieties loaded) was consid-
erablyless recyclable under these conditions, thus indicating
that the recyclability of 13 is largelydue to the presence of an
excess of Lewis basic ligand, which captures the catalytically
active species after the reaction. When the small amount of
ruthenium used (1 mol% over seven cycles) is taken into
account, 13 compares veryfavorablyin terms of recyclability
with literature systems.[3] In addition to being more recyclable,
13 displayed a much enhanced metathesis activity relative to 5
in the RCM of 30,[9] and was comparable in terms of reaction
rate to benchmark catalyst 2. For example, in the RCM of 30
at high dilution (0.01m, CH2Cl2, 208C, in air) the time taken to
reach 80% conversion to 31 was 65 min in the presence of 13,
whereas to 119 min were required when using non-polymer-
bound catalyst 5.[9]
Given the mode of formation of 13, it seemed likelythat a
high degree of self-generation of the polymer support would
be possible. As expected, when just 0.5 mol% of 13 was added
to a solution of 10 and 12 (1:3) in CH2Cl2, polymerization was
complete after 10 min to afford 13 (off-white color) and no
signal for the alkylidene was observed in the 1H NMR
spectrum. This ruthenium-deficient version of 13 could then
be loaded with commerciallyavailable 2 to a preselected level
under standard conditions (Scheme 3). It is envisaged that this
development will allow greater control of the catalyst-loading
process.
Received: June 12, 2002 [Z19469]
[1] a) M. O©Regan, M. DiMare, J. Robbins, G. C. Bazan, J. S. Murdzek,
R. R. Schrock, J. Am. Chem. Soc. 1990, 112, 3875 3881; b) P. Schwab,
M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 107,
2179 2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039 2041; c) J. S.
Kingsbury, J. P. Harrity, P. J. Bonitatebus, A. H. Hoveyda, J. Am.
Chem. Soc. 1999, 121, 791 799; d) S. B. Garber, J. S. Kingsbury, B. L.
Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168 8179; e) S.
Gessler, S. Randl, S. Blechert, Tetrahedron Lett. 2000, 41, 9973 9976;
f) H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 832 834;
Angew. Chem. Int. Ed. 2002, 41, 794 796; g) M. Scholl, S. Ding, C. W.
Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953 956; h) S. P. Nolan, J.
Huang, E. D. Stevens, J. L. Petersen, J. Am. Chem. Soc. 1999, 121,
2674 2678; i) L. Ackermann, A. F¸rstner, T. Westcamp, F. J. Kohl,
W. A. Hermann, Tetrahedron Lett. 1999, 40, 4787 4790; j) M. Scholl,
T. M. Trnka, J. P. Morgan, R. H. Grubbs, Tetrahedron Lett. 1999, 40,
2247 2250.
[2] For recent reviews on olefin metathesis, see: a) T. M. Trnka, R. H.
Grubbs, Acc. Chem. Res. 2001, 34, 18 29; b) A. F¸rstner, Angew.
Chem. 2000, 112, 3140 3172; Angew. Chem. Int. Ed. 2000, 39, 3012
3043; c) R. Roy, S. J. Das, Chem. Commun. 2000, 519 529; d) A. J.
Philips, A. D. Abell, Aldrichimica Acta 1999, 32, 75 90; e) S. K.
Armstrong, J. Chem. Soc. Perkin Trans. 1 1998, 371 388; f) R. H.
Grubbs, S. Chang, Tetrahedron 1998, 54, 4413 4450; g) K. J. Ivin, J.
Mol. Catal. A 1998, 133, 1 16; h) Alkene Metathesis in Organic
Synthesis (Ed.: A. F¸rstner), Springer, Berlin, 1998; i) M. L. Randall,
M. L. Snapper, J. Mol. Catal. A 1998, 133, 29 40; j) M. Schuster, S.
Blechert, Angew. Chem. 1997, 109, 2124 2144; Angew. Chem. Int. Ed.
Engl. 1997, 36, 2036 2056.
[3] a) S. T. Nguyen, R. H. Grubbs, J. Organomet. Chem. 1995, 497, 195
200; b) M. Ahmed, A. G. M. Barrett, D. C. Braddock, S. M. Cramp,
P. A. Procopiou, Tetrahedron Lett. 1999, 40, 8657 8662; c) M.
Ahmed, T. Arnauld, A. G. M. Barrett, D. C. Braddock, P. A. Proco-
piou, Synlett 2000, 1007 1009; d) L. Jafarpour, S. P. Nolan, Org. Lett.
2000, 2, 4075 4078; e) S. C. Sch¸rer, S. Gessler, N. Buschmann, S.
Blechert, Angew. Chem. 2000, 112, 4062 4065; Angew. Chem. Int. Ed.
2000, 39, 3898 3901; f) Q. Yao, Angew. Chem. 2000, 112, 4060 4062;
Angew. Chem. Int. Ed. 2000, 39, 3896 3898; g) J. S. Kingsbury, S. B.
Garber, J. M. Giftos, B. L. Gray, M. M. Okamoto, R. A. Farrer, J. T.
Fourkas, A. H. Hoveyda, Angew. Chem. 2001, 113, 4251 4256;
Angew. Chem. Int. Ed. 2001, 40, 3898 3901; h) S. Randl, N.
Buschmann, S. J. Connon, S. Blechert, Synlett 2001, 1547 1549; i) L.
Jafarpour, A. C. Hillier, S. P. Nolan, Organometallics 2002, 21, 442
444; j) J. Dowden, J. Savovic, Chem. Commun. 2001, 37 38.
In summary, we have developed a highly efficient and
recyclable ROMP-based catalyst,[10] which combines good
[4] Recently a recyclable molybdenum-based asymmetric catalyst was
reported: K. C. Hultzsch, J. A. Jernelius, A. H. Hoveyda, R. R.
Scheme 3. Self generation of the polymer support.
Angew. Chem. Int. Ed. 2002, 41, No. 20
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4120-3837 $ 20.00+.50/0
3837