Y. Wu et al. / Tetrahedron Letters 45(2004) 199–202
201
OTBS
OTBS
OTBS
H
H
H
H
H
OBn
OBn
BnO
a
Y
X
b
21a X = H, Y = OH
21b X = OH, Y = H
O
O
BnO
BnO
12
20
OTBS
OTBS
OTBS
H
H
H
H
H
OH
OBn
BnO
c
Y
X
e
Y
X
Y
X
f
d
CO2H
HO
HO
H
22a X = H, Y = OTBS
22b X = OTBS, Y = H
23a X = H, Y = OTBS
23b X = OTBS, Y = H
24a X = H, Y = OTBS
24b X = OTBS, Y = H
OTBS
H
OH
O
H
Y
1
O
g
1a X = H, Y = OH
1b X = OH, Y = H
4
Y
O
7
X
O
X
H
10
15
H
25a X = H, Y = OTBS
25b X = OTBS, Y = H
Scheme 3. Reagentsand condition:s (a) n-BuLi/19, CuCN/MeLi, 93% of 20; (b) L-Selectride, 90% of 21a/21b (1:8) or (S)-2-methyl-CBS-oxa-
zaborolidine/BH3ÆSMe2/THF/0 °C, 96.4% of 21a/21b (3:2); (c) TBSOTf/NEt3, 96% for 22a, 95% for 22b; (d) Li–naphthalene, 72% for 23a, 70% for
23b; (e) (i) MnO2/CH2Cl2, (ii) NaClO2/NaH2PO4/2-methyl-2-butene, 71% for 24a, 76% for 24b (2-step yields); (f) 2,4,6-trichlorobenzoyl chloride/
NEt3, DMAP, 81% for 25a, 83% for 25b; (g) 2 N HCl/THF, 91% for 1a, 93% for 1b.
10. (a) Zhu, J.-W.; Nagasawa, H.; Nagura, F.; Mohamad,
S. B.; Uto, Y.; Ohkura, K.; Hori, H. Biorg. Med. Chem.
2000, 8, 455–463; (b) Weigele, M.; Loewe, M. F.; Poss,
C. S. US 5516921 A 14 May 1996, p 14; Chem. Abstr.
1996, 125, 58201.
11. Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary,
K. J. Org. Chem. 2001, 66, 894–902.
12. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E.
N. Science 1997, 277, 936–938.
Acknowledgements
Financial support from the National Natural Science
Foundation of China (20025207, 20272071, 20372075),
the Chinese Academy of Sciences (Knowledge Innova-
tion Project, KGCX2-SW-209), and the Major State
Basic Research Development Program (G2000077502) is
gratefully acknowledged.
13. Gorst-Allman, C. P.; Stevn, P. S. J. Chem. Soc., Perkin
Trans. 1 1982, 2387–2390.
References and Notes
14. Gais, H.-J.; Lied, T. Angew. Chem. Int. Ed. Engl. 1984, 23,
145–146.
15. Ahmad, S.; Ozaki, S.; Nagase, T.; Iigo, M.; Tokuzen, R.
A. Hoshi, Chem. Pharm. Bull. 1987, 35, 4137–4143.
16. Kang, J.; Lim, G. J.; Yoon, S. K.; Kim, M. Y. J. Org.
Chem. 1995, 60, 564–577.
1. Singleton, V. L.; Bohonos, N.; Ullstrup, A. J. Nature
(London) 1958, 181, 1072–1073.
2. Weber, H. P.; Hauser, D.; Sigg, H. P. Helv. Chim. Acta
1971, 54, 2763–2766.
17. Sulikowski, G. A.; Lee, W.-M.; Jin, B.; Wu, B. Org. Lett
2000, 2, 1439–1442, We thank Prof. Sulikowski for
providing the experimental details.
18. Prashad, M.; Har, D.; Kim, H.-Y.; Repic, O. Tetrahedron
Lett. 1998, 39, 7067–7070.
19. Penning, T. D.; Djuric, S. W.; Haack, R. A.; Kalish, V. J.;
Miyashiro, J. M.; Rowell, B. W.; Yu, S. S. Synth.
Commun. 1990, 20, 307–312.
20. Shi, X.-X.; Khanapure, S. P.; Rokach, J. Tetrahedron
Lett. 1996, 37, 4331–4334.
3. Betina, V.; Betinova, M.; Kutkova, M. Arch. Mikrobiol.
1966, 55, 1–16.
4. Takatsuki, A.; Yamaguchi, I.; Tamura, G.; Misato, T.;
Amrima, K. J. Antibiot 1969, 22, 442–445.
5. Betina, V. Neoplasma 1969, 16, 23–32.
6. Bacikova, D.; Betina, V.; Nemec, P. Naturwissenschaften
1965, 51, 445–445.
7. Corey, E. J.; Wollenberg, R. H. Tetrahedron Lett. 1976,
4705–4708.
8. For recent total syntheses, see e.g.: (a) Wang, Y.; Romo,
D. Org. Lett. 2002, 4, 3231–3234; (b) Trost, B. M.;
Crawley, M. L. J. Am. Chem. Soc. 2002, 124, 9328–9329;
(c) Suh, Y. G.; Jung, J.-K.; Seo, S.-Y.; Min, K.-H.; Shin,
D.-Y.; Lee, Y.-S.; Kim, S.-H.; Park, H.-J. J. Org. Chem.
2002, 67, 4127–4137; (d) Kim, D.; Lee, J.; Shim, P. J.;
Lim, J. I.; Doi, T.; Kim, S. J. Org. Chem. 2002, 67, 772–
781.
21. Shi, X.-X.; Wu, Q. Q. Synth. Commun. 2000, 30, 4081–
4086.
22. (a) Russell, G. A.; Ochrymowycz, L. A. J. Org. Chem.
1969, 34, 3618–3624; (b) Nicolaou, K. C.; Bunnage, M. E.;
McGarry, D. G.; Shi, S.; Somers, P. K.; Wallace, P. A.;
Chu, X.-J.; Agrios, K. A.; Gunzner, J. L.; Yang, Z. Chem.
Eur. J. 1999, 5, 599–617.
23. Although examplesof uins g Mukaiyama reaction to
synthesize seven- or eight-membered rings are well
known, we are not aware of any precedentsof formation
9. Argade, A. B.; Devraj, R.; Vroman, J. A.; Haugwitz, R.
D.; Hollingshead, M.; Cushman, M. J. Med. Chem. 1998,
41, 3337–3346.