M. Schnabel et al. / Tetrahedron Letters 45 (2004) 295–297
297
10. (a) Arai, J.; Muramatsu, J. J. Org. Chem. 1983, 48, 121–
123; (b) Guillaume, H. A.; Perich, J. W.; Johns, R. B.;
Tregear, G. W. J. Org. Chem. 1989, 54, 1664–1668.
11. Vasella, A.; Witzig, C.; Chiara, J.-L.; Martin-Lomas, M.
Helv. Chim. Acta 1991, 74, 2073–2077.
hydrogenation over palladium oxide-hydrate removed
the benzyl ester and reduced the azido group simulta-
neously. Subsequently, complete deacetylation was car-
ried out with 40% aqueous methylamine.17 After
purification using size exclusion chromatography
(Superdex 30) the target molecule 2 was obtained in 77%
yield. NMR spectra were recorded in the same solvent as
reported in the literature and showed excellent accor-
dance.4a;18 In conjunction with the optical rotation the
structural assignment of the isolated compound was
confirmed by total synthesis.
12. Compound 8: ESI-MS: C32H34N4O11 Mr (calcd) 650.22,
21
M (found) 673.18 (M+Naþ); ½a )1.1 (c 1.0, dichlorom-
D
ethane); 1H NMR (360MHz, [ d6]-DMSO): d 7.65 (d,
J6;7 ¼ 8:2 Hz, 1H, H-7), 7.54 (d, J4;5 ¼ 7:8 Hz, 1H, H-4),
7.33–7.18 (m, 7H, Ph, H-2, H-6), 7.09 (dd, J4;5 ¼ 7:8 Hz,
J5;6 ¼ 7:3 Hz, 1H, H-5), 5.78 (d, J1 ;2 ¼ 5:7 Hz, 1H, H-10),
5.14–5.10(m, 3H, CH 2–Ph, H-30), 4.84–4.81 (m, 1H, H-40),
4.63–4.59 (m, 1H, H-a), 4.21–4.08 (m, 4H, H-20, H-50, H-
60), 3.18 (dd, Jgem ¼ 14:8 Hz, Jvic ¼ 5:7 Hz, 1H, H-ba), 3.13
(dd, Jgem ¼ 14:8 Hz, Jvic ¼ 7:6 Hz, 1H, H-bb), 2.10, 2.05,
1.97, 1.84 (4s, 12H, CH3); 13C NMR (90MHz, [ d6]-
DMSO): d 170.2, 169.8, 169.5, 168.9 (4C@O), 135.3 (Cq,
Ph), 134.0(C-7a), 129.1 (C-3a), 128.6–127.9 (CH, Ph),
124.1 (C-2), 122.3 (C-6), 119.9 (C-5), 118.7 (C-4), 112.4
(C00), 112.3 (C-7), 110.0 (C-3), 96.8 (C-10, JC;H ¼ 186:7 Hz),
72.2 (C-20), 68.9 (C-30), 67.7 (C-40), 66.8 (CH2–Ph), 66.5
(C-50), 62.8 (C-60), 61.3 (C-a), 26.9 (C-b), 23.8 (CH3), 20.7,
20.6, 20.5 (CH3, OAc).
0
0
In conclusion we have developed a strategy to obtain the
natural product N-glucosyl-tryptophan 2 by chemical
synthesis. Key steps involve the introduction of a
2-pivaloyl moiety to suppress the formation of the
tryptophan-1-yl amide acetals and the use of an a-azido
tryptophan derivative for improved yields. This chemi-
cal synthesis can provide sufficient amounts of N-glu-
cosyl-tryptophan to conduct biological studies.
13. Kunz, H.; Harreus, A. Liebigs Ann. Chem. 1982, 41–48.
14. Helferich, B.; Zirner, J. Chem. Ber. 1962, 95, 2604–2611.
15. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem.
Biochem. 1994, 50, 21–123.
Acknowledgements
16. Compound 13: ESI-MS: C35H40N4O11 Mr (calcd) 692.27,
24
M (found) 715.31 (M+Naþ); ½a )20.0 (c 0.4, dichloro-
We are grateful to Degussa AG for a generous donation
of chemicals.
D
methane); IR (KBr) m ¼ 2108:6 cmꢀ1 azide; 1H NMR
(360MHz, [ d6]-DMSO): d 7.63 (d, J6;7 ¼ 8:4 Hz, 1H, H-
7), 7.53 (d, J4;5 ¼ 7:7 Hz, 1H, H-4), 7.40–7.32 (m, 5H, Ph),
7.27 (s, 1H, H-2), 7.19 (dd, J6;7 ¼ 8:4 Hz, J5;6 ¼ 7:6 Hz, 1H,
H-6), 7.06 (dd, J4;5 ¼ 7:7 Hz, J5;6 ¼ 7:6 Hz, 1H, H-5), 6.22
(d, J1;2 ¼ 8:6 Hz, 1H, H-10), 5.59–5.48 (m, 2H, H-20, H-30),
5.25–5.15 (m, 3H, CH2–Ph, H-40), 4.54–4.50(m, 1H, H- a),
4.33–4.29 (m, 1H, H-50), 4.15–4.02 (m, 2H, H-6a0, H-6b0),
3.18 (dd, Jgem ¼ 14:9 Hz, Jvic ¼ 5:2 Hz, 1H, H-ba), 3.07 (dd,
Jgem ¼ 14:9 Hz, Jvic ¼ 8:0Hz, 1H, H- bb), 2.04, 1.96, 1.93,
(3 · s, total 9H, Ac), 0.67 (s, 9H, Piv); 13C NMR (90MHz,
[d6]-DMSO): d 175.5 (COOBzl), 170.1, 169.7, 169.5, 169.4
(4CO), 136.3 (C-7a), 135.4 (Cq, Ph), 128.5, 128.2, 128.1
(CH, Ph), 127.7 (C-3a), 124.2 (C-2), 122.1 (C-6), 120.0 (C-
5), 118.7 (C-4), 110.8 (C-3), 110.4 (C-7), 81.1 (C-10), 73.0
References and Notes
1. Sainio, E. L.; Pulkki, K.; Young, S. N. Amino Acids 1996,
10, 21–47.
€
€
2. (a) Hofsteenge, J.; Muller, D. R.; de Beer, T.; Loffler, A.;
Richter, W. J.; Vliegenthart, J. F. G. Biochemistry 1994,
€
33, 13524–13530; (b) Gade, G.; Kellner, R.; Rinehart, K.
L.; Proefke, M. L. Biochem. Biophys. Res. Commun. 1992,
189, 1303–1309; (c) Hofsteenge, J.; Blommers, M.; Hess,
D.; Furmanek, A.; Miroshnichenko, O. J. Biol. Chem.
1999, 274, 32786–32794.
0
(C-50), 72.5 (C-30), 69.7 (C-20), 68.0(C-4 ), 66.9 (CH2–Ph),
3. Diem, S.; Albert, J.; Herderich, M. Eur. Food Res.
Technol. 2001, 213, 439–447.
62.2 (C-60), 61.5 (C-a), 37.9 (Cq, Piv), 26.6
(C-b), 26.1 (CH3, Piv), 20.5, 20.4, 20.1 (CH3, Ac).
17. Griffin, B. E.; Jarman, M.; Reese, C. B. Tetrahedron 1968,
24, 639–662.
4. (a) Gutsche, B.; Grun, C.; Scheutzow, D.; Herderich, M.
Biochem. J. 1999, 343, 11–19; (b) Diem, S.; Bergmann, J.;
Herderich, M. J. Agric. Food Chem. 2000, 48, 4913–4917.
5. Kinjo, J.-E.; Takeshita, T.; Nohara, T. Chem. Pharm. Bull.
1988, 36, 4171–4173.
6. Nyhammar, T.; Pernemalm, P.-A. Food Chem. 1985, 17,
289–296.
7. (a) Kessler, H.; Michael, K.; Kottenhahn, M. Liebigs Ann.
Chem. 1994, 811–816; (b) Itazaki, H.; Fujiwara, T.; Sato,
A.; Kawamaru, Y.; Matsumoto, K. 1995, JP7109299;
Chem. Abstr. 1995, 701969.
8. (a) Sokolova, T. N.; Shevchenko, V. E.; Preobrazhens-
kaya, M. N. Carbohydr. Res. 1980, 83, 249–261; (b)
Buchanan, J. G.; Stoddart, J.; Wightman, R. H. J. Chem.
Soc., Perkin Trans. 1 1994, 1417–1426.
9. Preobrazhenskaya, M. N.; Vigdorchik, M. M.; Suvorov,
N. N. Tetrahedron 1967, 23, 4653–4660, and references
cited therein.
18. Compound 2: ESI-MS: C17H22N2O7 Mr (calcd) 366.1427,
21
M (found) 367.1507 (M+H)þ; ½a )19.0( c 0.2, water);
D
25
D
1
lit.4b: ½a )20.3 (c 0.2, water); H NMR (360MHz, [ d4]-
MeOH+1% TFA): d 7.62 (d, J4;5 ¼ 7:8 Hz, 1H, H-4), 7.58
(d, J6;7 ¼ 8:2 Hz, 1H, H-7), 7.36 (s, 1H, H-2), 7.23
(dd, J6;7 ¼ 8:2 Hz, J5;6 ¼7:1 Hz, 1H, H-6), 7.14
(dd, J4;5 ¼ 7:8 Hz, J5;6 ¼ 7:1 Hz, 1H, H-5), 5.51
(d, J1 ;2 ¼ 9:1 Hz, 1H, H-10), 4.28 (dd, J8a;9 ¼ 8:6 Hz,
J8b;9 ¼ 4:5 Hz, 1H, H-9), 3.92–3.85 (m, 2H, H-20, H-6a0),
3.67–3.46 (m, 5H, H-30, H-40, H-50, H-6b0, H-8a), 3.33–
3.27 under MeOD signal (m, 1H, H-8b); 13C NMR
(90MHz, [ d4]-MeOH + 1% TFA): d 171.5 (COOH), 138.8
(C-7a), 129.1 (C-3a), 125.7 (C-2), 123.6 (C-6), 121.3 (C-5),
119.3 (C-4), 111.1 (C-7), 109.6 (C-3), 86.4 (C-10), 80.3
(C-50), 78.6 (C-30), 74.0(C-2 0), 71.2 (C-40), 62.3 (C-60), 54.1
(C-9), 27.3 (C-8).
0
0