292
H. Helmboldt et al. / Tetrahedron Letters 45 (2004) 289–292
Lett. 1981, 22, 663–666; (g) Overman, L. E.; Rogers, B. N.;
Tellew, J. E.; Trenkle, W. C. J. Am. Chem. Soc. 1997, 119,
7159–7160; (h) Paterson, I.; McLeod, M. D. Tetrahedron
ꢀ
Lett. 1997, 38, 4183–4186; (i) Belanger, G.; Hong, F.;
Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle, W.
that (3R,4Re,15Si)-13 (leading to 12a–f) is destabilized
relative to (3R,4Si,15Re)-13 (leading to 5a–f) because the
bulky substituent OR1 at C-3 is directed toward the
concave face of the bicyclo[4.3.0]nonane-like transition
state (Fig. 3).
1
C. J. Org. Chem. 2002, 67, 7880–7883.
16. (2S,3R,4S,15R)-5d: H NMR (500 MHz, CDCl3) d )0.05
10. Assignment of the double bond configuration based on the
chemical shift of the vinyl ether double bond proton, see:
Hiersemann, M. Synthesis 2000, 1279–1290, and Ref. 9f.
(s, 3H), 0.00 (s, 3H), 0.86 (s, 9H), 1.10 (d, J ¼ 6:9 Hz, 3H),
1.25 (dd, J1 ¼ J2 ¼ 6:3 Hz, 6H), 1.40 (dd, J1 ¼ 14:0 Hz,
J2 ¼ 8:0 Hz, 1H), 1.91–2.02 (m, 1H), 2.53 (dd, J1 ¼
14:0 Hz, J2 ¼ 10:2 Hz, 1H), 2.61 (dd, J1 ¼ J2 ¼ 9:5 Hz,
1H), 3.17 (br s, 1H), 3.74 (dd, J1 ¼ 9:5 Hz, J2 ¼ 8:2 Hz,
1H), 5.00–5.08 (m, 2H), 5.13 (dd, J1 ¼ 10:1 Hz,
J2 ¼ 2:2 Hz, 1H), 5.75 (dt, J1 ¼ 17:3 Hz, J2 ¼ 9:8 Hz,
1H); 13C NMR (126 MHz, CDCl3) d )4.1, )3.5, 18.0,
18.8, 21.7, 25.9, 40.0, 42.9, 61.6, 69.7, 80.1, 82.8, 119.5,
134.6, 175.6; IR (neat) 775, 835, 1100, 1250, 1720, 2860,
1
11. 6d: H NMR (300 MHz, CDCl3) d )0.02 (s, 3H), 0.00 (s,
3H), 0.86 (s, 9H), 0.88 (d, J ¼ 6:8 Hz, 3H), 1.36 (d,
J ¼ 6:2 Hz, 6H), 1.68 (dd, J1 ¼ 6:8 Hz, J2 ¼ 0:3 Hz, 3H),
2.15–2.29 (m, 1H), 2.48 (dd, J1 ¼ 17:0 Hz, J2 ¼ 8:0 Hz,
1H), 3.00 (dd, J1 ¼ 16:9 Hz, J2 ¼ 5:5 Hz, 1H), 3.93 (dd,
J1 ¼ J2 ¼ 6:0 Hz, 1H), 5.11 (sept, 1H), 5.33–5.43 (m, 1H),
5.48–5.62 (m, 1H); 13C NMR (75.5 MHz, CDCl3) d )4.9,
)4.2, 15.4, 17.6, 18.2, 21.6, 25.9, 36.0, 42.0, 70.4, 76.8,
127.2, 131.7, 161.1, 194.9; IR (neat) 1050, 1080, 1100,
1260, 1730, 2860, 2930, 2960, 2980 cmÀ1; Anal. calcd for
2930, 2960 cmÀ1; ½aꢀ25 +4.8 (c 1.14, CHCl3); Anal. calcd for
D
C18H34O4Si: C, 63.11; H, 10.00. Found: C, 62.95; H, 10.21.
17. The thermal intramolecular carbonyl ene reaction of 6c
has been realized on a 4 mmol scale. Up-scaling has no
detrimental effect on the yield or the diastereoselectivity.
18. Mitsunobu, O. Synthesis 1981, 1–28.
19. (2S,3S,4S,15R)-14: 1H NMR (500 MHz, CDCl3) d 1.02 (d,
J ¼ 6:9 Hz, 3H), 1.28 (dd, J1 ¼ 6:3 Hz, J2 ¼ 3:8 Hz, 6H),
1.85 (dd, J1 ¼ 13:7 Hz, J2 ¼ 10:9 Hz, 1H), 2.37–2.47 (m,
1H), 2.55 (dd, J1 ¼ 13:6 Hz, J2 ¼ 8:8 Hz, 1H), 2.98 (dd,
J1 ¼ 8:8 Hz, J2 ¼ 4:1 Hz, 1H), 3.23 (br s, 1H), 5.02–5.14
(m, 3H), 5.56 (dd, J1 ¼ J2 ¼ 3:9 Hz, 1H), 5.79 (ddd,
J1 ¼ 17:3 Hz, J2 ¼ 10:4 Hz, J3 ¼ 8:8 Hz, 1H), 7.58 (d,
J ¼ 8:8 Hz, 2H), 7.98 (d, J ¼ 8:5 Hz, 2H); 13C NMR
(126 MHz, CDCl3) d 14.2, 21.7, 38.2, 45.7, 57.7, 69.9, 80.9,
82.1, 119.4, 128.1, 129.0, 131.2, 131.4, 131.8, 165.4, 175.9;
IR (neat) 750, 1100, 1270, 1720, 2980 cmÀ1; Anal. calcd for
C18H34O4Si: C, 63.11; H, 10.00. Found: C, 63.39; H, 10.36;
25
½aꢀ )3.4 (c 1.11, CHCl3).
D
12. An increased reaction temperature or a prolonged reaction
time led to inferior chemical yields.
13. Attempts to catalyze the ene reaction of 6d with copper(II)
bis(oxazolines) according to the procedure of Yang et al.5d
did not afford the desired product 5d.
14. The configurational assignment is based on extensive
NOESY experiments.
15. The observation that the cyclopentane diastereomer 5c
was preferentially formed over 12c even in the initial phase
of the thermal ene reaction when the retro-ene reaction
is slow due to the low concentration of 5c and 12c
indicates in our opinion, that 5a–f are not only the
thermodynamically more stable products of the thermal
ene reaction but also kinetically favored. We suppose
C19H23BrO5: C, 55.49; H, 5.64. Found: C, 55.66; H, 5.82;
25
½aꢀ +98.2 (c 4.50, CHCl3).
D