V. Cadierno, J. Gimeno and N. Nebra
de Asturias (FICYT project IB05–035) for financial support. N.N. and
V.C. thank the MEC and the European Social Fund for the award of a
PhD grant and a “Ramón y Cajal” contract, respectively.
a stoichiometric amount of CuACHTREUN(G OAc)2, LiCl, and water: M. Mori, Y.
Ban, Chem. Pharm. Bull. 1976, 24, 1992–1999.
[12] Removal of the N-allyl group of a galactopyranosyl-N-allylacet-
AHCTREaUNG mide has been achieved by OsO4-catalyzed hydroxylation of the
C=C bond, subsequent NaIO4-mediated scission of the resulting vici-
nal diol, followed by repetition of this reaction sequence on the
enolic form of the aldehyde intermediate: P. I. Kitov, D. R. Bundle,
Org. Lett. 2001, 3, 2835–2838.
[1] a) P. J. Kocienski, Protecting Groups, 3rd ed., Thieme Verlag, Stutt-
gart, 2003; b) P. G. M. Wuts, T. W. Greene, Greeneꢀs Protective
Groups in Organic Synthesis, 4th ed., Wiley-Interscience, New York,
2006.
[2] For specific reviews dealing with the removal of allylic protecting
groups see: a) F. GuibØ, Tetrahedron 1998, 54, 2967–3042; b) S. Es-
coubet, S. Gastaldi, M. Bertrand, Eur. J. Org. Chem. 2005, 3855–
3873.
[3] Representative examples: a) F. Garro-Helion, A. Merzouk, F.
GuibØ, J. Org. Chem. 1993, 58, 6109–6113; b) S. Lemaire-Audoire,
M. Savignac, J. P. GenÞt, J.-M. Bernard, Tetrahedron Lett. 1995, 36,
1267–1270; c) S. Lemaire-Audoire, M. Savignac, C. Dupuis, J. P.
GenÞt, Bull. Soc. Chim. Fr. 1995, 132, 1157–1166; d) M. Honda, H.
Morita, I. Nagakura, J. Org. Chem. 1997, 62, 8932–8936; e) H. Tsu-
kamoto, T. Suzuki, Y. Kondo, Synlett 2003, 1105–1108; f) J. Gon-
zµlez-Sabín, V. Gotor, F. Rebolledo, J. Org. Chem. 2007, 72, 1309–
1314.
[4] Representative examples: a) B. C. Laguzza, B. Ganem, Tetrahedron
Lett. 1981, 22, 1483–1486; b) R. J. Sundberg, G. S. Hamilton, J. P.
Laurino, J. Org. Chem. 1988, 53, 976–983; c) B. Alcaide, P. Almen-
dros, J. M. Alonso, M. F. Aly, Org. Lett. 2001, 3, 3781–3784; d) C.
Cadot, P. I. Dalko, J. Cossy, Tetrahedron Lett. 2002, 43, 1839–1841;
e) B. Alcaide, P. Almendros, J. M. Alonso, Chem. Eur. J. 2003, 9,
5793–5799; f) M. Sato, Y. Gunji, T. Ikeno, T. Yamada, Synthesis
2004, 1434–1438; g) B. Alcaide, P. Almendros, J. M. Alonso, A.
Luna, Synthesis 2005, 668–672; h) F. Aznar, A.-B. García, M.-P.
Cabal, Adv. Synth. Catal. 2006, 348, 2443–2448.
[13] Amides containing 2-arylallyl groups can be deprotected upon treat-
ment with a stoichiometric amount of tert-butyllithium. The transfor-
mation involves a carbolithiation reaction of the styrenyl moiety fol-
lowed by a b-elimination process: J. Barluenga, F. J. FaÇanas, R.
Sanz, C. Marcos, J. M. Ignacio, Chem. Commun. 2005, 933–935.
[14] The development of organic transformations in aqueous media is
one of the major cornerstones in modern chemistry: a) C.-J. Li,
Chem. Rev. 1993, 93, 2023–2035; b) A. Lubineau, J. AugØ, Y. Que-
neau, Synthesis 1994, 741–760; c) C.-J. Li, T. H. Chan, Organic Re-
actions in Aqueous Media, Wiley, New York, 1997; d) Aqueous Or-
ganometallic Catalysis (Eds.: I. T. Horvµth, F. Joó), Kluwer, Do-
drecht, 2001; e) U. M. Lindstrçm, Chem. Rev. 2002, 102, 2751–2772;
f) C.-J. Li, Chem. Rev. 2005, 105, 3095–3165; g) C. K. Z. Andrade,
L. M. Alves, Curr. Org. Chem. 2005, 9, 195–218; h) C.-J. Li, L.
Chen, Chem. Soc. Rev. 2006, 35, 68–82.
[15] There are relatively few methods presently available for the depro-
tection of an amide moiety (see reference [1]), the most general in-
volving the oxidative cleavage of an activated aryl group attached to
the nitrogen atom by CeIV ammonium nitrate. See for example:
D. R. Kronenthal, C. Y. Han, M. K. Taylor, J. Org. Chem. 1982, 47,
2765–2768 and references therein.
[16] The authors suggest that a ruthenium-hydride, resulting from the de-
composition of the Grubbs catalyst, is the real active species in the
C=C isomerization process, see references [4e,8].
[17] a) Deprotection of 3a also takes place in the presence of other oxi-
dizing agents (for example, NaIO4, KMnO4). At least one equivalent
of oxidant is required, otherwise incomplete reactions are observed.
b) As expected, in the absence of oxidant, a mixture of (E)-and
[5] V. Cadierno, S. E. García-Garrido, J. Gimeno, N. Nebra, Chem.
Commun. 2005, 4086–4088.
[6] Complexes 1 and 2 are efficient catalysts for the redox isomerization
of allylic alcohols into carbonyl compounds in both organic and
aqueous media: a) V. Cadierno, S. E. García-Garrido, J. Gimeno,
Chem. Commun. 2004, 232–233; b) V. Cadierno, S. E. García-Garri-
do, J. Gimeno, A. Varela-lvarez, J. A. Sordo, J. Am. Chem. Soc.
2006, 128, 1360–1370.
[7] For a general review on the stoichiometric reactivity and catalytic
applications of complexes 1 and 2 see: V. Cadierno, P. Crochet, S. E.
García-Garrido, J. Gimeno, Curr. Org. Chem. 2006, 10, 165–183.
[8] a) B. Alcaide, P. Almendros, J. M. Alonso, Tetrahedron Lett. 2003,
44, 8693–8695; b) B. Alcaide, P. Almendros, J. M. Alonso, Chem.
Eur. J. 2006, 12, 2874–2879.
(Z)-N-(1-propenyl)benzamide is formed (approximately
a 1.2:1
ratio). c) The use of classical organic solvents (for example, toluene,
THF, CH2Cl2) or water/organic solvent mixtures drastically reduces
the efficiency of this deprotection protocol, the maximum yield at-
tained in these cases being 30% (always in the presence of KIO4).
[18] The presence of a benzyl substituent on the nitrogen atom leads to
slower transformations, the deprotection of amide 4 f requiring at
least 17 h to attain a 97% yield (Table 2, entry 6). A similar effect
of the benzyl group has been previously observed by us in the de-
protection of N-allylic amines promoted by complexes 1 and 2. See
reference [5].
[9] Deprotection of tertiary N-allyl amides by AlMe3 in the presence of
[19] Treatment of N,N-diallyl amides with [RuACTHERNGU(=CHPh)Cl2ACHTRE(UGN PCy3)2] leads
catalytic amounts of [NiCl2ACHTRE(UNG dppp)] (dppp=1,3-bis(diphenylphospha-
to the expected formation of pyrrolinyl amides through a RCM pro-
cess, see for example: C. Bressy, C. Menant, O. Piva, Synlett 2005,
577–582.
nyl)propane) has been described: T. Taniguchi, K. Ogasawara, Tetra-
hedron Lett. 1998, 39, 4679–4682.
[10] The N-allyl cleavage of a 3-amino-b-lactam and a 2-hydroxy-g-
lactam, induced by RhCl3 followed by KMnO4 or acidic treatments,
has been also reported: a) G. Cainelli, M. DaCol, P. Gelletti, D. Gia-
comini, Synlett 1997, 923–924; b) O. Kanno, M. Miyauchi, I. Kawa-
moto, Heterocycles 2000, 53, 173–181.
[20] For a review on ruthenium-catalyzed tandem processes see: C. Bru-
neau, S. DØrien, P. H. Dixneuf, Top. Organomet. Chem. 2006, 19,
295–326.
[11] The N-allyl bond of AcN(R)CH2CH=CH2 (R=Bn, CH2Bn) has
Received: March 27, 2007
been cleaved in the presence of a catalytic amount of Pd
A
Published online: May 22, 2007
6594
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 6590 – 6594