salt (7.40 g, 6.43 mmol) was dissolved in acetonitrile (50 mL) and
an excess of ammonium hexafluorophosphate (10.5 g, 64.3 mmol)
was then added and the mixture was heated to reflux overnight.
The solvent was then removed under reduced pressure and the
product redissolved in dichloromethane. The dichloromethane
was removed under reduced pressure to leave the pure leucine
(CD3CN, d/ppm, J/Hz): 8.57 (3H, s, Py-H); 8.51 (3H, d, J = 8.4,
Py-H); 8.37 (3H, d, J = 6.0, Py-H); 8.00 (9H, m, Ar-H and Py-H);
6.65 (6H, m, Ar-H); 6.28 (3H, t, J = 6.4, NH); 5.80 (6H, s, CH2);
4.71 (6H, d, J = 6.4, CH2); 2.50 (6H, q, J = 7.2, CH2); 0.80 (9H,
1
t, J = 7.2, CH3). 13C{ H}-NMR (CD3CN, d/ppm): 153.0; 151.0;
145.4; 142.4; 142.4; 141.6; 138.8; 128.8; 128.0; 126.2; 117.6; 112.1;
58.2; 43.6; 24.2; 14.5. ES+ MS: 1178 [M - PF6]+, 516 [M - 2PF6]2+,
296 [M - 3PF6]3+. Anal: calcd. for C51H54N6O9(PF6)3: C 46.26, H
4.08, N 9.52. Found: C 45.73, H 4.13, N 9.30%. IR: 3239 n(NH).
◦
tripod (2.63 g, 1.95 mmol, 36% yield). Mp—decomposes 95 C.
1H NMR (CD3CN, d/ppm, J/Hz): 8.67 (1H, s, Py C-H); 8.51
(1H, d, J = 8.0, Py C-H); 8.28 (1H, d, J = 6.0, Py C-H); 7.96
(1H, t, J = 6.4, Py C-H); 5.85 (2H, s, CH2Py); 4.14, 3.66 (2H,
AB, J = 15.6, CH2NH); 3.67 (3H, s, CO2CH3); 3.29 (1H, t, J =
7.6, CHCO2CH3); 2.56 (2H, q, J = 7.6, ArCH2CH3); 1.77 (1H, m,
CH2CH(CH3)2); 1.47 (2H, t, J = 7.2, CH2CH(CH3)2); 0.90 (6H,
Acknowledgements
We are grateful to the EPSRC for funding (SJD and AMT).
d, J = 6.8, CH2CH(CH3)2); 0.86 (3H, t, J = 2.8, ArCH2CH3). 13
C
NMR (DMSO-d6, 100 MHz, d/ppm): 175.1, 149.9, 145.2, 143.1,
142.3, 141.7, 128.2, 127.8, 58.7, 57.3, 51.5, 47.2, 41.7, 24.3, 23.5,
22.6, 22.0, 14.8. EI-MS: m/z = 1345 [M]+, 528 [M - 2PF6]2+, 304
[M - 3PF6]3+. IR (n/cm-1): 2960, 1728, 1456, 1260, 1198, 1017,
828. Anal. Calcd. for C54H81F18N6O6P3·3H2O: C 46.35, H 6.27,
N 6.01. Found: C 46.45, H 5.90, N 6.03%.
References
1 J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor Chemistry,
Royal Society of Chemistry, Cambridge, 2006.
2 T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and F. M.
Pfeffer, Coord. Chem. Rev., 2006, 250, 3094.
3 T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffer and
G. M. Hussey, Tetrahedron Lett., 2003, 44, 6575.
4 S. Pandya, J. H. Yu and D. Parker, Dalton Trans., 2006, 2757.
5 P. A. Gale, M. E. Light, B. McNally, K. Navakhun, K. E. Sliwinski and
B. D. Smith, Chem. Commun., 2005, 3773.
6 P. A. Gale, Coord. Chem. Rev., 2006, 250, 2917 preface to the special
issue and subsequent reviews.
7 J. W. Steed, Chem. Commun., 2006, 2637.
8 M. H. Filby, T. D. Humphries, D. R. Turner, R. Kataky, J. Kruusma
and J. W. Steed, Chem. Commun., 2006, 156.
Tris(N-((pyridin-3-yl)methyl)benzeneamine) hexafluorophos-
phate (4a)
1,3,5-Tris(bromomethyl)-2,4,6-triethylbenzene (0.62 g, 1.4 mmol)
and N-((pyridine-3-yl)methyl)benzeneamine39 (1.5 g, 8.2 mmol)
were dissolved in ethanol and refluxed for 120 hours. After this
time, the solvent was removed under reduced pressure to yield the
bromide salt as a yellow oil. Without purification, the bromide salt
(0.32 g, 0.32 mmol) was dissolved in methanol (100 mL), and excess
NH4PF6 (0.53 g, 3.2 mmol) was added. The solution was stirred at
room temperature for 6 hours. During this time, a yellow precipi-
tate formed. The solid was collected by filtration, and washed with
methanol, and was found to be the desired product (yield 0.30 g,
9 M. Boiocchi, L. Del Boca, D. Esteban-Gomez, L. Fabbrizzi, M.
Licchelli and E. Monzani, Chem.–Eur. J., 2005, 11, 3097.
10 V. Amendola, D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli, Acc.
Chem. Res., 2006, 39, 343.
11 L. G. Lange, J. F. Riordan and B. L. Vallee, Biochemistry, 1974, 13,
4361.
12 L. H. Uppadine, F. R. Keene and P. D. Beer, J. Chem. Soc., Dalton
Trans., 2001, 2188.
13 M. D. Best, S. L. Tobey and E. V. Anslyn, Coord. Chem. Rev., 2003,
240, 3.
14 C. R. Bondy and S. J. Loeb, Coord. Chem. Rev., 2003, 240, 77.
15 A. P. Davis, Coord. Chem. Rev., 2006, 250, 2939.
16 G. Heinrichs, S. Kubik, J. Lacour and L. Vial, J. Org. Chem., 2005, 70,
4498.
17 C. Schmuck and M. Schwegmann, J. Am. Chem. Soc., 2005, 127, 3373.
18 G. K. Budnikov, G. A. Evtyugin, Y. G. Budnikova and V. A. Al’fonsov,
J. Anal. Chem., 2008, 63, 2.
1
0.25 mmol, 79%). H NMR (CD3CN, d/ppm, J/Hz): 8.52 (3H,
d, J= 6.0, Py-H); 8.49 (3H, s, py-H); 8.40 (3H, d, J = 6.0, Py-H);
8.01 (3H, t, J = 6.0, Py-H); 7.13 (6H, t, J= 8.5, Ar-H); 6.73 (3H, t,
J = 8.5, Ar-H); 6.55 (6H, d, J = 8.5, Ar-H); 5.76 (6H, s, CH2); 5.27
(3H, s, NH); 4.60 (6H, s, CH2); 2.45 (6H, q, J = 7.5, CH2); 0.77
1
(9H, t, J = 7.5, CH3). 13C{ H}-NMR (CD3CN, d/ppm): 150.8;
147.2; 145.3; 143.3; 142.2; 129.6; 128.6; 128.0; 118.2; 117.6; 113.0;
58.1; 44.1; 24.1; 14.4. ES+ MS: 1043 [M - PF6]+, 449 [M - 2PF6]2+,
251 [M - 3PF6]3+. Anal: calcd. for C51H57N6(PF6)3: C 51.52, H 4.83,
N 7.07. Found: C 51.51, H 4.89, N 6.86%. IR: 3452 n(NH).
19 K. J. Wallace, R. Hanes, E. Anslyn, J. Morey, K. V. Kilway and J. Siegel,
Synthesis-Stuttgart, 2005, 2080.
20 A. Metzger, V. M. Lynch and E. V. Anslyn, Angew. Chem., Int. Ed.
Engl., 1997, 36, 862.
21 G. Hennrich and E. V. Anslyn, Chem.–Eur. J., 2002, 8, 2218.
22 L. O. Abouderbala, W. J. Belcher, M. G. Boutelle, P. J. Cragg, M.
Fabre, J. Dhaliwal, J. W. Steed, D. R. Turner and K. J. Wallace, Chem.
Commun., 2002, 358.
23 V. Amendola, M. Boiocchi, B. Colasson, L. Fabbrizzi, M.-J. R. Douton
and F. Ugozzoli, Angew. Chem., Int. Ed., 2006, 45, 6920.
24 Y. Bai, B.-G. Zhang, C. Y. Duan, D.-B. Dang and Q.-J. Meng,
New J. Chem., 2006, 30, 266.
25 J. Zhang, A. M. Bond, J. Belcher, K. J. Wallace and J. W. Steed, J. Phys.
Chem. B, 2003, 107, 5777.
26 H. Ihm, S. Yun, H. G. Kim, J. K. Kim and K. S. Kim, Org. Lett., 2002,
4, 2897.
Tris(4-nitro-N-((pyridin-3-yl)methyl)benzeneamine) hexafluoro-
phosphate (4b)
1,3,5-Tris(bromomethyl)-2,4,6-triethylbenzene (0.64 g, 1.5 mmol)
and 4-nitro-N-((pyridine-3-yl)methyl)benzeneamine39 (1.0 g,
4.4 mmol) were dissolved in 1,2-dichloroethane and refluxed
for 120 hours. After this time, the solvent was removed under
reduced pressure to yield the bromide salt as a yellow oil. Without
purification, the bromide salt (0.40 g, 0.29 mmol) was dissolved in
methanol (100 mL), and excess NH4PF6 (2.3 g, 14.1 mmol) was
added. The solution was stirred at room temperature for 6 hours.
During this time, a yellow precipitate formed. The solid was
collected by filtration, and washed with methanol, and was found
to be the desired product (yield 0.33 g, 0.21 mmol, 65%). 1H NMR
27 S. Yun, H. Ihm, H. G. Kim, C. W. Lee, B. Indrajit, K. S. Oh, Y. J. Gong,
J. W. Lee, J. Yoon, H. C. Lee and K. S. Kim, J. Org. Chem., 2003, 68,
2467.
28 S. Sasaki, D. Citterio, S. Ozawa and K. Suzuki, J. Chem. Soc., Perkin
Trans. 2, 2001, 2309.
29 W.-Y. Sun, J. Xie, T.-A. Okamura, C.-K. Huang and N. Ueyama, Chem.
Commun., 2000, 1429.
1560 | Org. Biomol. Chem., 2009, 7, 1554–1561
This journal is
The Royal Society of Chemistry 2009
©