6342
K. Schro¨der et al. / Tetrahedron Letters 48 (2007) 6339–6342
11. (a) Bitterlich, B.; Anilkumar, G.; Gelalcha, F. G.; Spilker,
B.; Grotevendt, A.; Jackstell, R.; Tse, M. K.; Beller, M.
Chem. Asian J. 2007, 2, 521–529; (b) Anilkumar, G.;
Bitterlich, B.; Gelalcha, F. G.; Tse, M. K.; Beller, M.
Chem. Commun. 2007, 289–291.
Mr. I. Zenz, Dr. Feng Shi and Dr. B. Spilker (LIKAT)
are acknowledged for their valuable support in the
laboratory.
12. For other non-heme Fe catalysts for epoxidation see: (a)
Taktak, S.; Ye, W.-h.; Herrera, A. M.; Rybak-Akimova,
E. V. Inorg. Chem. 2007, 46, 2929–2942; (b) Suh, Y.; Seo,
M. S.; Kim, K. M.; Kim, Y. S.; Jang, H. G.; Tosha, T.;
Kitagawa, T.; Kim, J.; Nam, W. J. Inorg. Biochem. 2006,
100, 627–633; (c) Dubois, G.; Murphy, A.; Stack, T. D. P.
Org. Lett. 2003, 5, 2469–2472; (d) Chen, K.; Costas, M.;
Kim, J.; Tipton, A. K.; Que, L., Jr. J. Am. Chem. Soc.
2002, 124, 3026–3035; (e) Bassan, A.; Blomberg, M. R. A.;
Siegbahn, P. E. M.; Que, L., Jr. J. Am. Chem. Soc. 2002,
124, 11056–11063; (f) White, M. C.; Doyle, A. G.;
Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 7194–
7195; (g) Francis, M. B.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 1999, 38, 937–941; (h) Nam, W.; Kim, H. J.; Kim,
S. H.; Ho, R. Y. N.; Valentine, J. S. Inorg. Chem. 1996, 35,
1045–1049; (i) Nam, W.; Ho, R.; Valentine, J. S. J. Am.
Chem. Soc. 1991, 113, 7052–7054; (j) Sugimoto, H.;
Sawyer, D. T. J. Org. Chem. 1985, 50, 1784–1786; (k)
Yamamoto, T.; Kimura, M. J. Chem. Soc., Chem.
Commun. 1977, 948–949.
References and notes
1. For a list of common oxidants, their active oxygen
contents and waste products, see: Ba¨ckvall, J.-E. Modern
Oxidation Methods; Wiley-VCH: Weinheim, 2004; p 22.
2. Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457–
2473.
3. For recent examples of transition metal catalyzed epoxida-
tions using hydrogen peroxide see: (a) Colladon, M.;
Scarso, A.; Sgarbossa, P.; Michelin, R. A.; Strukul, G. J.
Am. Chem. Soc. 2006, 128, 14006–14007; (b) Sawada, Y.;
Matsumoto, Z.; Kondo, S.; Watanabe, H.; Ozawa, T.;
Suzuki, K.; Saito, B.; Katsuki, T. Angew Chem., Int. Ed.
2006, 45, 3478–3480; (c) Matsumoto, K.; Sawada, Y.; Saito,
B.; Sakai, K.; Katsuki, T. Angew. Chem., Int. Ed. 2005, 44,
4935–4939; (d) Mahammed, A.; Gross, Z. J. Am. Chem.
Soc. 2005, 127, 2883–2887; (e) Kuhn, F. E.; Scherbaum, A.;
¨
Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149–
4164; (f) Kamata, K.; Yamaguchi, K.; Hikichi, S.; Mizuno,
N. Adv. Synth. Catal. 2003, 345, 1193–1196; (g) Adam, W.;
Alsters, P. L.; Neumann, R.; Saha-Mo¨ller, C. R.; Sloboda-
Rozner, D.; Zhang, R. J. Org. Chem. 2003, 68, 1721–1728;
(h) Lane, B. S.; Vogt, M.; DeRose, V. J.; Burgess, K. J. Am.
Chem. Soc. 2002, 124, 11946–11954.
13. Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem.
Rev. 2004, 104, 939–986.
14. For special examples: Yu, Y.; Liang, Y.-H.; Brostromer,
E.; Quan, J.-M.; Panjikar, S.; Dong, Y.-H.; Su, X.-D. J.
Bio. Chem. 2006, 281, 36929–36936.
4. Lippard, S. J.; Berg, J. M. Principles of Bioinorganic
Chemistry; University Science Books: Mill Valley, CA,
1994.
5. Metalloporphyrins in Catalytic Oxidations; Sheldon, R. A.,
Ed.; Marcel Dekker Ltd: New York, 1994.
15. (a) Kluge, R.; Hocke, H.; Schulz, M. Tetrahedron:
Asymmetry 1997, 8, 2513–2516; (b) Kluge, R.; Schulz,
M.; Liebsch, S. Tetrahedron 1996, 52, 2957–2976.
16. Nam, W.; Lee, H. J.; Oh, S.-Y.; Kim, C.; Jang, H. G. J.
Inorg. Biochem. 2000, 80, 219.
6. (a) Bioinorganic Chemistry: Transition Metals in Biology
and their Coordination Chemistry; Trautheim, A. X., Ed.;
Wiley-VCH: Weinheim, 1997; (b) Ponka, P.; Schulman, H.
M.; Woodworth, R. C. Iron Transport and Storage; CRC
Press. Inc: Boca Raton, Florida, 1990.
17. (a) Battioni, P.; Renaud, J.-P.; Bartoli, J. F.; Reina-
Artiles, M.; Fort, M.; Mansuy, D. J. Am. Chem. Soc.
1988, 110, 8462–8470; (b) Renaud, J.-P.; Battioni, P.;
Bartoli, J. F.; Mansay, D. J. Chem. Soc., Chem. Commun.
1985, 888–889.
7. Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev.
2004, 104, 6217–6254.
18. Pietika¨inen, P. Tetrahedron Lett. 1994, 35, 941–944.
19. (a) Adolfsson, H.; Converso, A.; Sharpless, K. B. Tetra-
hedron Lett. 1999, 40, 3991–3994; (b) Hermann, W. A.;
Kratzer, R. M.; Ding, H.; Thiel, W. R.; Glas, H. J.
Organomet. Chem. 1998, 555, 293–295.
20. (a) Kureshy et al. Tetrahedron: Asymmetry 2001, 12, 433–
437; (b) Krishnan, R.; Vancheesan, S. J. Mol. Catal. 1999,
142, 377–382.
21. A few defined complexes of iron and simple imidazole
derivatives are known in coordination chemistry. See: (a)
Cotton, S. A.; Franckevicius, V.; Fawcett, F. Polyhedron
2002, 21, 2055–2061; (b) Cotton, S. A.; Pisani, P. V. H.;
Stubbs, R. Inorg. Nucl. Chem. Lett. 1976, 12, 695; (c) Seel,
F.; Wende, P.; Marcolin, H. E.; Trautwein, A. T.; Maeda,
Y. Z. Anorg. Allg. Chem. 1976, 426, 198–204.
8. (a) Kischel, J.; Michalik, D.; Zapf, A.; Beller, M. Chem.
Asian J. 2007, 6, 865–870; (b) Kischel, J.; Mertins, K.;
Michalik, D.; Zapf, A.; Beller, M. Adv. Synth. Catal. 2007,
349, 871–875; (c) Kischel, J.; Jovel, I.; Mertins, K.; Zapf,
A.; Beller, M. Org. Lett. 2006, 8, 19–22; (d) Jovel, I.;
Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew.
Chem., Int. Ed. 2005, 44, 3913–3916.
9. Enthaler, S.; Erre, G.; Tse, M. K.; Junge, K.; Beller, M.
Tetrahedron Lett. 2006, 47, 8095–8099.
10. For our recent work on catalytic epoxidations see: (a)
Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao,
H.; Do¨bler, C.; Spannenberg, A.; Ma¨gerlein, W.; Hugl, H.;
Beller, M. Chem. Eur. J. 2006, 12, 1855–1874; (b) Tse, M.
K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.;
Spannenberg, A.; Do¨bler, C.; Ma¨gerlein, W.; Hugl, H.;
Beller, M. Chem. Eur. J. 2006, 12, 1875–1888; (c) Tse, M.
K.; Klawonn, M.; Bhor, S.; Do¨bler, C.; Anilkumar, G.;
Hugl, H.; Ma¨gerlein, W.; Beller, M. Org. Lett. 2005, 7,
987–990; (d) Tse, M. K.; Do¨bler, C.; Bhor, S.; Klawonn,
M.; Ma¨gerlein, W.; Hugl, H.; Beller, M. Angew. Chem., Int.
Ed. 2004, 43, 5255–5260; (e) Bhor, S.; Anilkumar, G.; Tse,
M. K.; Klawonn, M.; Do¨bler, C.; Bitterlich, B.; Grote-
vendt, A.; Beller, M. Org. Lett. 2005, 7, 3393–3396; (f)
Anilkumar, G.; Bhor, S.; Tse, M. K.; Klawonn, M.;
Bitterlich, B.; Beller, M. Tetrahedron: Asymmetry 2005, 16,
3536.
22. Hermann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–
1309.
23. Aqueous H2O2 (30%) from Merck was used as received.
The peroxide content varied from 33% to 40% as deter-
mined by titration.
24. Side-products are rearrangement products of the corre-
sponding epoxide.
25. Most of the substrates and epoxides for GC–FID
calibration are commercially available. The others were
synthesized according to literature methods and deter-
mined by NMR and GC–MS. In addition, authentic
samples of the commercial products were analyzed by
GC–MS and GC–FID.