Table 1 (continued )
Substrate Kinase
are excellent probes for testing the donor substrate specificity of
diverse glycosyltransferases.
Product
Yield (%)
ND
This work was supported by an NIH grant R01HD065122
and an NSF grant CHE-1012511. X. Chen is a Camille Dreyfus
Teacher-Scholar and a UC-Davis Chancellor’s Fellow. The
authors would like to thank Professor Min Chen of Shandong
University in China and Professor Peng George Wang of
Georgia State University for providing the plasmid of SpGalK.
NahK
Notes and references
1 Essentials of Glycobiology, ed. A. Varki, R. D. Cummings,
J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart
and M. E. Etzler, Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, New York, 2nd edn, 2008, pp. 47–73.
2 S. Singh and S. E. Hogan, Microbios, 1994, 77, 217–222.
3 J. S. Swartley, L. J. Liu, Y. K. Miller, L. E. Martin, S. Edupuganti
and D. S. Stephens, J. Bacteriol., 1998, 180, 1533–1539.
4 L. J. McKerral and R. Y. Lo, Infect. Immun., 2002, 70, 2622–2629.
5 M. Portoles, K. B. Kiser, N. Bhasin, K. H. Chan and J. C. Lee,
Infect. Immun., 2001, 69, 917–923.
6 N. Murazumi, K. Kumita, Y. Araki and E. Ito, J. Biochem., 1988,
104, 980–984.
7 Y. H. Zhang, C. Ginsberg, Y. Yuan and S. Walker, Biochemistry,
2006, 45, 10895–10904.
8 K. Yokoyama, H. Mizuguchi, Y. Araki, S. Kaya and E. Ito,
J. Bacteriol., 1989, 171, 940–946.
9 N. Murazumi, Y. Araki and E. Ito, Eur. J. Biochem., 1986, 161, 51–59.
10 C. R. Harrington and J. Baddiley, Eur. J. Biochem., 1985, 153, 639–645.
11 X. Chen, ACS Chem. Biol., 2011, 6, 14–17.
Scheme 2 Synthesis of UDP-ManNAc (30) from UDP-ManN3 (29)
in 79% yield via the formation of UDP-ManNH2 (28) by catalytic
hydrogenation followed by acetylation.
The synthesis of all other UDP-sugars listed in Table 1 was
carried out using the one-pot three-enzyme system shown in
Scheme 1. As shown in Table 1, the one-pot three-enzyme
system provided excellent yields for the formation of UDP-Gal
(16, 86%), UDP-ManF (27, 92%), and UDP-ManN3 (29, 90%)
from the corresponding monosaccharides Gal (1), ManF (12),
and ManN3 (14), respectively. Three of the derivatives of
UDP-Glc including UDP-2-deoxyGlc (22), UDP-GlcNH2
(23), and UDP-GlcN3 (24) were obtained from 2-deoxyGlc
(7), glucosamine (GlcNH2, 8) and GlcN3 (9) in 56%, 43%, and
61% yields, respectively. The moderate yields for these three
compounds may be attributed by less optimal NahK kinase
activity for GlcNH2 (8) and GlcN3 (9), and the less optimal
BLUSP activity for 2-deoxyGlc (7). UDP-Man (26) was
synthesized from Man (11) in moderate 60% yield using the
one-pot three-enzyme system and the moderate yield was most
likely due to the less optimal activity of BLUSP towards Man-1-P.
The synthesis of four UDP-Gal derivatives including its 2-deoxy,
2-deoxy-2-amido-, 2-deoxy-2-azido-, and 2-deoxy-2-acetamido-
derivatives (17–20) using the one-pot three-enzyme system was
not successful. In addition, UDP-GlcNAc (25), UDP-ManNH2
(28), and UDP-ManNAc (30) could not be produced from the
corresponding monosaccharides (10, 13, and 15) using the
one-pot three-enzyme system. These were most likely due to
the substrate restriction of BLUSP instead of the kinases used.
Although UDP-ManNH2 (28) and UDP-ManNAc (30) were
not directly available from ManNH2 (13) and ManNAc (15),
respectively, via the one-pot three-enzyme system shown in
Scheme 1, they can be readily prepared via simple chemical
modification reactions from UDP-ManN3 (29) obtained from
the one-pot three-enzyme system. As shown in Scheme 2, a simple
one-step catalytic hydrogenation of UDP-ManN3 (29) produced
UDP-ManNH2 (28). Acetylation of the amino group in UDP-
ManNH2 (28) provided an easy access of UDP-ManNAc (30).
A similar chemical acylation of UDP-ManNH2 can be used to
synthesize other acyl derivatives of UDP-ManNAc.31,32
12 J. Yang, X. Fu, J. Liao, L. Liu and J. S. Thorson, Chem. Biol.,
2005, 12, 657–664.
13 X. Chen, J. Zhang, P. Kowal, Z. Liu, P. R. Andreana, Y. Lu and
P. G. Wang, J. Am. Chem. Soc., 2001, 123, 8866–8867.
14 J. W. Fang, J. Li, X. Chen, Y. N. Zhang, J. Q. Wang, Z. M. Guo,
W. Zhang, L. B. Yu, K. Brew and P. G. Wang, J. Am. Chem. Soc.,
1998, 120, 6635–6638.
15 Y. Ichikawa, Y.-C. Lin, D. P. Dumas, G.-J. Shen, E. Garcia-Junceda,
M. A. Williams, R. Bayer, C. Ketcham, L. E. Walker, J. C. Paulson
and C.-H. Wong, J. Am. Chem. Soc., 1992, 114, 9283–9298.
16 A. Zervosen and L. Elling, J. Am. Chem. Soc., 1996, 118, 1836–1840.
17 X. Chen, J. W. Fang, J. B. Zhang, Z. Y. Liu, J. Shao, P. Kowal,
P. Andreana and P. G. Wang, J. Am. Chem. Soc., 2001, 123, 2081–2082.
18 T. Endo, S. Koizumi, K. Tabata, S. Kakita and A. Ozaki,
Carbohydr. Res., 1999, 316, 179–183.
19 H. M. Kalcker, B. Branganca and A. Munch-Peterson, Nature,
1953, 172, 1038.
20 K. J. Isselbacher, J. Biol. Chem., 1958, 232, 429–444.
21 L. Lee, A. Kimura and T. Tochikura, J. Biochem., 1979, 86, 923–928.
22 T. Kotake, D. Yamaguchi, H. Ohzono, S. Hojo, S. Kaneko, H. K.
Ishida and Y. Tsumuraya, J. Biol. Chem., 2004, 279, 45728–45736.
23 L. A. Litterer, J. A. Schnurr, K. L. Plaisance, K. K. Storey, J. W.
Gronwald and D. A. Somers, Plant Physiol. Biochem., 2006, 44, 171–180.
24 S. Damerow, A. C. Lamerz, T. Haselhorst, J. Fuhring,
P. Zarnovican, M. von Itzstein and F. H. Routier, J. Biol. Chem.,
2010, 285, 878–887.
25 T. Yang and M. Bar-Peled, Biochem. J., 2010, 429, 533–543.
26 R. M. Mizanur, C. J. Zea and N. L. Pohl, J. Am. Chem. Soc., 2004,
126, 15993–15998.
27 Y. Li, H. Yu, Y. Chen, K. Lau, L. Cai, H. Cao, V. K. Tiwari, J. Qu,
V. Thon, P. G. Wang and X. Chen, Molecules, 2011, 16, 6396–6407.
28 M. Chen, L. L. Chen, Y. Zou, M. Xue, M. Liang, L. Jin, W. Y. Guan,
J. Shen, W. Wang, L. Wang, J. Liu and P. G. Wang, Carbohydr. Res.,
2011, 346, 2421–2425.
29 K. Lau, V. Thon, H. Yu, L. Ding, Y. Chen, M. M. Muthana, D. Wong,
R. Huang and X. Chen, Chem. Commun., 2010, 46, 6066–6068.
30 J. Yang, X. Fu, Q. Jia, J. Shen, J. B. Biggins, J. Jiang, J. Zhao,
J. J. Schmidt, P. G. Wang and J. S. Thorson, Org. Lett., 2003, 5,
2223–2226.
31 H. Cao, S. Muthana, Y. Li, J. Cheng and X. Chen, Bioorg. Med.
Chem. Lett., 2009, 19, 5869–5871.
32 Y. Chen, V. Thon, Y. Li, H. Yu, L. Ding, K. Lau, J. Qu, L. Hie
and X. Chen, Chem. Commun., 2011, 47, 10815–10817.
In conclusion, taking advantage of the substrate promiscuity of
several monosaccharide-1-phosphate kinases and a Bifidobacterium
longum UDP-sugar pyrophosphorylase (BLUSP), we developed
an efficient one-pot multienzyme system to quickly obtain
structurally defined UDP-Gal, UDP-Glc, UDP-Man, and their
derivatives in preparative scales. With additional simple chemical
modifications of the UDP-ManN3 produced by the one-pot
three-enzyme reaction, biosynthetically useful UDP-ManNAc
was readily obtained. The acquired UDP-sugar and derivatives
c
2730 Chem. Commun., 2012, 48, 2728–2730
This journal is The Royal Society of Chemistry 2012