ARTICLES
Glyceramide 3-phosphate (15). Yield 27% (phosphate buffer, 3 d, 75 °C). 1H NMR
(600 MHz, H2O/D2O 9:1, pH 7) δH 4.25 (1H, dd, J = 5.2, 3.2 Hz, CH), 4.00
(1H, ABXY, J = 11.6, 7.6, 3.2 Hz, CH2), 3.92 (1H, ABXY, J = 11.6, 7.6, 5.2 Hz, CH2).
13C NMR (151 MHz, H2O/D2O 9:1, pH 7) δC 179.4 (C1), 73.5 (d, J = 7.2 Hz,
C2), 67.5 (d, J = 4.4 Hz, C3). 31P NMR (161 MHz, H2O/D2O 9:1, pH 7) δP 4.4
(t, J = 7.6 Hz).
19. Cody, G. D. et al. Primordial carbonylated iron–sulfur compounds and the
synthesis of pyruvate. Science 289, 1337–1340 (2000).
20. Weber, A. The sugar model: catalysis by amines and amino acid products. Orig.
Life Evol. Biosph. 31, 71–86 (2001).
21. Keller, M. A., Turchyn, A. V. & Ralser, M. Non-enzymatic glycolysis and pentose
phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol.
10, 725–737 (2014).
Glyceric acid 3-phosphate (4-3P). Yield 31% (phosphate buffer, 3 days, 75 °C,
then pH 12, 5 h, 75 °C). 1H NMR (600 MHz, H2O/D2O 9:1, pH 7) δH 4.11 (1H, dd,
J = 6.1, 2.8 Hz, CH), 3.93 (1H, ABXY, J = 11.2, 5.8, 2.8 Hz, CH2), 3.80 (1H,
ABXY, J = 11.2, 6.1, 5.8 Hz, CH2). 13C NMR (151 MHz, H2O/D2O 9:1, pH 7)
δC 179.6 (C1), 73.5 (C2), 67.5 (d, J = 4.4 Hz, C3). 31P NMR (161 MHz, H2O/D2O
9:1, pH 7) δP 4.0 (t, J = 5.8 Hz).
22. Guzman, M. I. & Martin, S. T. Prebiotic metabolism: production by mineral
photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic
acid cycle. Astrobiology 9, 833–842 (2009).
23. Kolb, V. & Orgel, L. E. Phosphorylation of glyceric acid in aqueous solution
using trimetaphosphate. Orig. Life Evol. Biosph. 26, 7–13 (1996).
24. Pasek, M. A., Kee, T. P., Bryant, D. E., Pavlov, A. A. & Lunine, J. I. Production of
potentially prebiotic condensed phosphates by phosphorus redox chemistry.
Angew. Chem. Int. Ed. 47, 7918–7920 (2008).
25. Krishnamurthy, R., Arrhenius, G. & Eschenmoser, A. Formation of
glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Orig. Life
Evol. Biosph. 29, 333–354 (1999).
26. Rabinowitz, J., Lores, J., Krebsbach, R. & Rogers, G. Peptide formation in the
presence of linear or cyclic polyphosphates. Nature 224, 795–796 (1969).
27. Saffhill, R. Selective phosphorylation of the cis-2′,3′-diol of unprotected
ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 36,
2881–2883 (1970).
Glycolaldehyde phosphate aminonitrile (16). Yield 90% (pH 9.5, 100 h, RT).
1H NMR (600 MHz, H2O/D2O 9:1, pH 9.5) δH 4.09 (1H, t, J = 5.3 Hz, CH), 3.91
(1H, ABXY, J = 10.3, 5.9, 5.3 Hz, CH2), 3.85 (1H, ABXY, J = 10.3, 5.9, 5.3 Hz, CH2).
13C NMR (151 MHz, H2O/D2O 9:1, pH 9.5) δC 122.0 (C1), 65.4 (d, J = 4.0 Hz,
C3), 44.5 (d, J = 8.4 Hz, C2). 31P NMR (161 MHz, H2O/D2O 9:1, pH 9.5)
δP 3.8 (t, J = 5.9 Hz).
Phosphoserinamide (17). Yield 65% (pH 9.5, 3 d, RT). 1H NMR (400 MHz,
H2O/D2O 9:1, pH 9.5) δH 3.86 (1H, ABXY, J = 11.6, 5.4, 5.2 Hz, CH2), 3.84
(1H, ABXY, J = 11.6, 5.4, 5.2 Hz, CH2), 3.65 (1H, t, J = 5.2 Hz, CH). 13C NMR
(151 MHz, H2O/D2O 9:1, pH 9.5) δC 178.5 (C1), 66.5 (d, J = 4.4 Hz, C3), 55.4
(d, J = 7.7 Hz, C2). 31P NMR (161 MHz, H2O/D2O 9:1, pH 7) δP 4.1 (t, J = 5.4 Hz).
28. Mullen, L. B. & Sutherland, J. D. Formation of potentially prebiotic amphiphiles
by reaction of β-hydroxy-n-alkylamines with cyclotriphosphate. Angew. Chem.
Int. Ed. 46, 4166–4168 (2007).
29. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev.
Biochem. Mol. Biol. 39, 99–123 (2004).
30. Keefe, A. D. & Miller, S. L. Are polyphosphates or phosphate esters prebiotic
reagents? J. Mol. Evol. 41, 693–702 (1995).
Phosphoserine (5-3P). Yield 36% (pH 9.5, 3 days, RT, then pH 12, 3 days, 75 °C).
1H NMR (400 MHz, H2O/D2O 9:1, pH 12) δH 3.93 (1H, ABXY, J = 10.1, 4.5, 4.5 Hz,
CH2), 3.81 (1H, ABXY, J = 10.1, 6.2, 4.5 Hz, CH2), 3.46 (1H, dd, J = 6.2, 4.5 Hz,
CH). 13C NMR (151 MHz, H2O/D2O 9:1, pH 12) δC 181.3 (C1), 67.9 (d, J = 5.0 Hz,
C3), 57.6 (d, J = 7.7 Hz, C2). 31P NMR (161 MHz, H2O/D2O 9:1, pH 12) δP 4.4
(t, J = 4.5 Hz).
31. Sutherland, J. D., Mullen, L. B. & Buchet, F. F. Potentially prebiotic Passerini-
type reactions of phosphates. Synlett 14, 2161–2163 (2008).
32. Krishnamurthy, R., Guntha, S. & Eschenmoser, A. Regioselective α-
phosphorylation of aldoses in aqueous solution. Angew. Chem. Int. Ed. 39,
2281–2285 (2000).
33. Muller, D. et al. Chemie von α-Aminonitrilen. Aldomerisierung von
Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und
(in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten:
rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die
Reaktionshauptprodukte. Helv. Chim. Acta 73, 1410–1468 (1990).
34. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284,
2118–2124 (1999).
35. Corey, E. J., Gilman, N. W. & Ganem, B. E. New methods for the oxidation
of aldehydes to carboxylic acids and esters. J. Am. Chem. Soc.
90, 5616–5617 (1968).
36. Goldman, N., Reed, E. J., Fried, L. E., William Kuo, I.-F. & Maiti, A. Synthesis of
glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2,
949–954 (2010).
37. Öberg, K. I. et al. The comet-like composition of a protoplanetary disk as
revealed by complex cyanides. Nature 520, 198–201 (2015).
38. Osterberg, R. Origins of metal ions in biology. Nature 249, 382–383 (1974).
39. Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of
hydrated Fe2+-significance for banded iron formations. Nature 303,
163–164 (1983).
40. Liu, R. & Orgel, L. E. Oxidative acylation using thioacids. Nature 389, 52–54
(1997).
41. Keefe, A. D. & Miller, S. L. Was ferrocyanide a prebiotic reagent? Orig. Life Evol.
Biosph. 26, 111–129 (1996).
Received 8 May 2016; accepted 23 August 2016;
published online 10 October 2016
References
1. Eschenmoser, A. & Loewenthal, E. Chemistry of potentially prebiological natural
products. Chem. Soc. Rev. 21, 1–16 (1992).
2. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. L. The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000).
3. Oparin, A. I. The Origin of Life (MacMillan, 1938).
4. Huber, C. & Wächterhäuser, G. Activated acetic acid by carbon fixation on (Fe,
Ni)S under primordial conditions. Science 276, 245–247 (1997).
5. Miller, S. L., Schopf, J. W. & Lazcano, A. Oparin’s ‘origin of life’: sixty years later.
J. Mol. Evol. 44, 351–353 (1997).
6. Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of
intermediary metabolism. Proc. Natl Acad. Sci. USA 97, 7704–7708 (2000).
7. Zhang, X. V. & Martin, S. T. Driving parts of Krebs cycle in reverse through
mineral photochemistry. J. Am. Chem. Soc. 128, 16032–16033 (2006).
8. Eschenmoser, A. On a hypothetical generational relationship between HCN and
constituents of the reductive citric acid cycle. Chem. Biodiv. 4, 554–573 (2007).
9. Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS
Biol. 6, 5–13 (2008).
10. Cooper, G., Reed, C., Nguyen, D., Carter, M. & Wang, Y. Detection and
formation scenario of citric acid, pyruvic acid, and other possible metabolism
precursors in carbonaceous meteorites. Proc. Natl Acad. Sci. USA 108,
14015–14020 (2011).
42. Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated
by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).
43. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental
crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).
44. Post, J. E. Manganese oxide minerals: crystal structures and economic and
environmental significance. Proc. Natl Acad. Sci. USA 96, 3447–3454 (1997).
45. Tebo, B. M. et al. Biogenic manganese oxides: properties and mechanisms of
formation. Annu. Rev. Earth Planet. Sci. 32, 287–328 (2004).
46. Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).
47. Maynard, J. B. The chemistry of manganese ores through time: a signal
of increasing diversity of Earth-surface environments. Econ. Geol.
105, 535–552 (2010).
11. Sagi, V. N., Punna, V., Hu, F., Meher, G. & Krishnamurthy, R. Exploratory
experiments on the chemistry of the ‘glyoxylate scenario’: formation of
ketosugars from dihydroxyfumarate. J. Am. Chem. Soc. 134, 3577–3589 (2012).
12. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common
origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism.
Nat. Chem. 7, 301–307 (2015).
13. De Duve, C. Singularites: Landmarks on the Pathway of Life (Cambridge Univ.
Press, 2005).
14. Powner, M. W. & Sutherland, J. D. Prebiotic chemistry: a new modus operandi.
Phil. Trans. R. Soc. B 366, 2870–2877 (2011).
15. Nelson, D. L. & Cox, M. M. in Lehninger Principles of Biochemistry 4th edn,
Ch. 13, 493–497 (W. H. Freeman 2004).
48. Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas
and implications for early Earth’s atmosphere. Nature 480, 79–82 (2011).
49. Hazen, R. Paleomineralogy of the Hadean eon: a preliminary species list. Am. J.
Sci. 13, 807–843 (2013).
50. Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin
of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).
51. Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals.
Chem. Rev. 99, 1991–2069 (1999).
16. Walsh, C. T., Benson, T. E., Kim, D. H. & Lees, W. J. The versatility of
phosphoenolpyruvate and its vinyl ether products in biosynthesis. Chem. Biol.
3, 83–91 (1996).
17. Potter, S. & Fothergill-Gilmore, L. A. Molecular evolution: the origin of
glycolysis. Biochem. Mol. Biol. Educ. 21, 45–48 (1993).
18. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated
pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459,
239–242 (2009).
7
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.