1202
H. P. Acharya, Y. Kobayashi / Tetrahedron Letters 45 (2004) 1199–1202
In summary, we have succeeded in synthesis of D12-PGJ2
(2), 15-deoxy-D12;14-PGJ2 (3), and acetylene analogues
based on an aldol strategy starting with the TBS ether of
monoacetate 5a. Since preparation of 5a has been
established, high efficiency and flexibility of the present
method will allow synthesis of analogues other than that
mentioned in the text, thus spurring biological investi-
gation. In addition, we established conditions for Pd-
catalyzed reaction of 5 (R ¼ H, TBS) with malonate
anion, which would encourage use of products 8 (R ¼ H,
TBS) as key compounds in various fields.
Dussault, I.; Forman, B. M. Prostaglandins Other Lipid
Mediat. 2000, 62, 1–13.
5. Cayman supplies D12-PGJ2 and 5-deoxy-D12;14-PGJ2, the
latter probably being synthesized by degradation of
PGD2,6 while Ono Pharmaceutical has gifted D12-PGJ2
to research groups.
6. Base-catalyzed decomposition of PGD2 produces five
compounds, from which 15-deoxy-D12;14-PGJ2 is isolated
as an olefinic mixture at C(14)–(15): Maxey, K. M.;
Hessler, E.; MacDonald, J.; Hitchingham, L. Prostaglan-
dins Other Lipid Mediat. 2000, 62, 15–21.
7. The synthesis, however, suffers from low efficiency in
several steps: Bickley, J. F.; Jadhav, V.; Roberts, S. M.;
Santoro, M. G.; Steiner, A.; Sutton, P. W. Synlett 2003,
1170–1174.
8. Kobayashi, Y.; Murugesh, M. G.; Nakano, M.; Takahisa,
E.; Usmani, S. B.; Ainai, T. J. Org. Chem. 2002, 67, 7110–
7123.
9. Deardorff, D. R.; Linde, R. G., II, Martin, A. M.;
Shulman, M. J. J. Org. Chem. 1986, 54, 2759–2762.
10. Bestmann, H. J.; Stransky, W.; Vostrowsky, O. Chem.
Ber. 1976, 109, 1694–1700; Viala, J.; Santelli, M. Synthesis
1988, 395–397.
Acknowledgements
This work was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Science,
Sports, and Culture, Japan. We thank Ono Pharma-
ceutical Co., Ltd. for providing us 1H NMR spectrum of
D12-PGJ2.
11. Kiyooka, S.; Hena, M. A. J. Org. Chem. 1999, 64, 5511–
5523.
12. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.;
Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987,
109, 6765–6780.
References and notes
13. In contrast to the previous synthesis of the enantiomer,11
the present method seems convenient with regard to the
total number of steps including preparation of the aldol
partner and the catalyst.
1. (a) Fitzpatrick, F. A.; Wynalda, M. A. J. Biol. Chem.
1983, 258, 11713–11718; (b) Hirata, Y.; Hayashi, H.; Ito,
S.; Kikawa, Y.; Ishibashi, M.; Sudo, M.; Miyazaki, H.;
Fukushima, M.; Narumiya, S.; Hayaishi, O. J. Biol. Chem.
1988, 263, 16619–16625.
14. The stereochemistries of the isomers were tentatively
determined by comparison of Rf values and 1H NMR
chemical shifts with those of related aldol products.8
15. (a) Zhu, J.; Yang, J.-Y.; Klunder, A. J. H.; Liu, Z.-Y.;
Zwanenburg, B. Tetrahedron 1995, 51, 5847–5870; (b)
Takeda, K.; Nakajima, A.; Yoshii, E. Synlett 1997, 255–
256; (c) Suzuki, M.; Kiho, T.; Tomokiyo, K.; Furuta, K.;
Fukushima, S.; Takeuchi, Y.; Nakanishi, M.; Noyori, R.
J. Med. Chem. 1998, 41, 3084–3090; (d) Tius, M. A.; Hu,
H.; Kawakami, J. K.; Busch-Petersen, J. J. Org. Chem.
1998, 63, 5971–5976.
2. Recent reports and earlier ones: (a) Lee, T.-S.; Tsai, H.-L.;
Chau, L.-Y. J. Biol. Chem. 2003, 278, 19325–19330; (b)
Oliva, J. L.; Perez-Sala, D.; Castrillo, A.; Martinez, N.;
Canada, F. J.; Bosca, L.; Rojas, J. M. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 4772–4777; (c) McClay, E. F.
Prostaglandins Other Lipid Mediat. 2000, 62, 75–90; (d)
Takeda, K.; Ichiki, T.; Tokunou, T.; Iino, N.; Takeshita,
A. J. Biol. Chem. 2001, 276, 48950–48955; (e) Narumiya,
S.; Ohno, K.; Fukushima, M.; Fujiwara, M. J. Pharmacol.
Exp. Ther. 1987, 242, 306–311; (f) Kato, T.; Fukushima,
M.; Kurozumi, S.; Noyori, R. Cancer Res. 1986, 46, 3538–
3542; (g) Bregman, M. D.; Funk, C.; Fukushima, M.
Cancer Res. 1986, 46, 2740–2744; (h) Narumiya, S.;
Fukushima, M. J. Pharmacol. Exp. Ther. 1986, 239,
500–505.
3. (a) Tontonoz, P.; Hu, E.; Spiegelman, B. M. Cell 1994, 79,
1147–1156; (b) Forman, B. M.; Tontonoz, P.; Chen, J.;
Brun, R. P.; Spiegelman, B. M.; Evans, R. M. Cell 1995,
83, 803–812; (c) Kliewer, S. A.; Lenhard, J. M.; Willson,
T. M.; Patel, I.; Morris, D. C.; Lehmann, J. M. Cell 1995,
83, 813–819; (d) Clay, C. E.; Namen, A. M.; Fonteh, A.
N.; Atsumi, G.; High, K. P.; Chilton, F. H. Prostaglandins
Other Lipid Mediat. 2000, 62, 23–32.
16. The 1H NMR spectrum of 3 at 500 MHz is presented
below since the spectrum measured at 300 MHz was
insufficient for determination of the olefin geometry at
C(14)–(15): 1H NMR (500 MHz, CDCl3) d 0.89 (t,
J ¼ 7 Hz, 3H), 1.22–1.36 (m, 4H), 1.39–1.49 (m, 2H),
1.62–1.72 (m, 2H), 2.04 (q, J ¼ 7 Hz, 2H), 2.18–2.37 (m,
5H), 2.56–2.62 (m, 1H), 3.56–3.61 (m, 1H), 5.33–5.40 (m,
1H), 5.42–5.49 (m, 1H), 6.23 (dt, J ¼ 15, 7 Hz, 1H), 6.31
(ddt, J ¼ 15, 11, 1 Hz, 1H), 6.36 (dd, J ¼ 6, 2 Hz, 1H),
6.95 (d, J ¼ 11 Hz, 1H), 7.47 (ddd, J ¼ 6, 2.5, 1 Hz, 1H).
1
Note that the reference for the H NMR spectrum of 3 is
not indicated in Ref. 7, in which the authors state
accordance of the 1H NMR spectrum of 3 with that
reported.
4. Reviews: (a) Bishop-Bailey, D.; Wray, J. Prostaglandins
Other Lipid Mediat. 2003, 71, 1–22; (b) Straus, D. S.;
Glass, C. K. Med. Res. Rev. 2001, 21, 185–210; (c)
17. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13,
3769–3772.