352
A. Armstrong et al.
LETTER
Cox, L. R.; DeBoos, G. A.; Fullbrook, J. J.; Percy, J. M.;
Spencer, N. S.; Tolley, M. Org. Lett. 2003, 5, 337.
(4) Kakinuma, K.; Sakagami, Y. Agric. Biol. Chem. 1978, 42,
279.
(5) (a) Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S. J.
Org. Chem. 1991, 56, 2976. (b) Buchanan, J. G.; Hill, D. G.;
Wightman, R. H. Tetrahedron 1995, 51, 6033. (c) For a
recent synthesis of C2-epi-hygromycin A, see: Trost, B. M.;
Dudash, J. J.; Dirat, O. Chem.–Eur. J. 2002, 8, 259.
(6) Sola, L.; Castro, J.; Moyano, A.; Pericas, M.; Riera, A.
Tetrahedron Lett. 1992, 33, 2836.
that of the correct hygromycin C4-epimer reported by
Buchanan.5b NOE measurements on 16 gave firm evi-
dence that it was the C4-epimer. A 14% enhancement of
H4 upon irradiation of H3 was particularly diagnostic.
Assuming that complete epimerisation did not occur in
any of the transformations employed,13 this suggests that
the major product 10a in the second AD step has the
configuration depicted in Scheme 4.
O
(7) ‘Super AD-mix’ refers to commercial AD-mix
supplemented with 1 mol% K2OsO2(OH)4, 5 mol% ligand
and 1 equiv MeSO2NH2. The absolute configuration of 9 is
assigned based upon the Sharpless mnemonic.1 The ee of
(Z)-9 was determined using HPLC (Chiralcel OD, 1 mL per
min, 5% IPA/hexane, detection at 210 nm, retention times:
11.8 min (minor enantiomer), 27.8 min (major enantiomer).
We have been unable to determine the ee of (E)-9.
(8) Hashiyama, T.; Morikawa, K.; Sharpless, K. B. J. Org.
Chem. 1992, 57, 5067.
O
O
a
O
b
O
OPh
OPh
1
4
13
TBSO
OTBS
TBSO
OTBS
15
16
Scheme 6 Reagents and conditions: (a) Phenol (1.1 equiv), PPh3
(1.2 equiv), THF, then DEAD (1.2 equiv), 2.5 h, 98% (3:1 15:C1-epi-
15); (b) TFA, THF, H2O, 79%.
(9) Rf values (20% Et2O-petroleum Et2O): 11, 0.85; 10a, 0.21;
10b, 0.14. Characteristic data for dione 11 include carbonyl
In conclusion, we have demonstrated that 1-silyloxy-1,3-
dienes can be regioselectively dihydroxylated on the 3,4-
alkene. In the second dihydroxylation step, we have noted
an unusual side-reaction, namely over-oxidation to the di-
one. We have shown that the double dihydroxylation
products may be manipulated via selective oxidation of a
primary alcohol to allow the synthesis of furanose deriva-
tives, including compounds related to the C4-epimer of
the furanose contained in the antibiotic hygromycin.
Efforts to refine this strategy by improving the yield and
selectivity of the second alkene functionalisation step are
currently under investigation.
stretches in the IR spectrum at 1716 and 1675 cm–1, and 13
NMR resonances at d = 201 and 200 ppm.
C
(10) Monenschein, H.; Drager, G.; Jung, A.; Kirschning, A.
Chem.–Eur. J. 1999, 5, 2270.
(11) (a) Review: De Nooy, A. E. J.; Besemer, A. C.; van Bekkum,
H. Synthesis 1996, 1153. (b) Einhorn, J.; Einhorn, C.;
Ratajczak, F.; Pierre, J. P. J. Org. Chem. 1996, 61, 7452.
(c) De Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett.
2001, 3, 3041. (d) de Luca, L.; Giacomelli, G.; Masala, S.;
Porcheddu, A. J. Org. Chem. 2003, 68, 4999.
(12) H1 in the major anomer appeared as a singlet, while that in
the minor was d, J = 3.6 Hz. Comparison to ref.5a,b and to
various pentafuranoses then suggests the anomeric
configuration indicated. Stevens, J. D.; Fletcher, H. G. J. J.
Org. Chem. 1968, 33, 1799.
Acknowledgement
(13) We have demonstrated that deketalisation of the benzyl ether
of 12 regenerates 10a, suggesting that epimerisation has not
occurred here. We cannot rule out epimerisation at C4 in the
deprotection of 15. However, molecular mechanics (MMFF)
indicate that the 16 is 7.7 kcal/mol less stable than its C4-
epimer, suggesting that epimerisation is unlikely.
We thank the EPSRC and Pfizer Central Research (CASE
studentship to CJW) for their support of this work. We also thank
Pfizer, Merck Sharp and Dohme, and Bristol-Myers Squibb for
generous unrestricted support of our research programmes.
20
Data for 16: white amorphous solid; mp 79–81 °C; [a]D
–37.5 (c 0.1, CH2Cl2). IR (film): nmax = 2949, 2928, 2857,
1718, 1587, 1490, 1254, 1254 cm–1. 1H NMR (250 MHz,
CDCl3) d = 7.35–7.01 (5 H, m, Ph), 5.82 (1 H, d, J = 3.1 Hz,
2-H), 4.72 (1 H, d, J = 4.4 Hz, 5-H), 4.42 (1 H, dd, J = 2.6
and 4.4 Hz, 4-H), 4.16 (1 H, app. t, J = 3.0 Hz, 3-H), 2.28
(3 H, s, 6-CH3), 0.95 [9 H, s, SiC(CH3)3], 0.86 [9 H, s,
SiC(CH3)3], 0.15 [3 H, s, Si(CH3)2], 0.13 [3 H, s,
ROSi(CH3)2], 0.10 [3 H, s, Si(CH3)2], 0.05 [3 H, s,
Si(CH3)2]. 13C NMR (62.5 MHz, CDCl3): d = 209.0 (C),
157.3 (C), 129.5 (CH), 122.2 (CH), 116.3 (CH), 102.2 (CH),
85.7 (CH), 79.2 (CH), 77.9 (CH), 28.6 (CH3), 25.7 (CH3),
25.6 (CH3), 18.2 (C), 17.8 (C), –4.4 (C), –4.7 (C), –5.1 (C),
–5.2 (C). MS (CI): m/z = 484 (100) [M + NH4]+, 390 (5), 201
(31), 132 (24). Anal. Calcd for C24H42Si2O5 [M+NH4]+
requires 484.2915. Found: 484.2919.
References
(1) For an excellent review, see: Kolb, H. C.; VanNieuwenhze,
M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(2) Armstrong, A.; Barsanti, P. A.; Jones, L. H.; Ahmed, G. J.
Org. Chem. 2000, 65, 7020.
(3) (a) Becker, H.; Soler, M. A.; Sharpless, K. B. Tetrahedron
1995, 51, 1345; Other examples of regioselective AD of
ester-substituted dienes include:. (b) Armstrong, R. W.;
Tellew, J. E.; Moran, E. J. Tetrahedron Lett. 1996, 37, 447.
(c) Nicolaou, K. C.; Yue, E. W.; La Greca, S.; Nadin, A.;
Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De
Riccardis, F. Chem.–Eur. J. 1995, 1, 467. (d) Bruckner, R.;
Harcken, C. Tetrahedron Lett. 2001, 42, 3967. (e) For a
recent example of synthesis of a xylulose derivative using
regioselective AD of a 2-alkoxy-1,1-difluoro-1,3-diene, see:
Synlett 2004, No. 2, 350–352 © Thieme Stuttgart · New York