An In vestiga tion of th e Rea ction of 2-Am in oben za ld eh yd e
Der iva tives w ith Con ju ga ted Nitr o-olefin s: An Ea sy a n d Efficien t
Syn th esis of 3-Nitr o-1,2-d ih yd r oqu in olin es a n d 3-Nitr oqu in olin es
Ming-Chung Yan, Zhijay Tu, Chunchi Lin, Shengkai Ko, J ianming Hsu, and Ching-Fa Yao*
Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road,
Taipei, Taiwan 116, R. O. C.
cheyaocf@scc.ntnu.edu.tw
Received February 24, 2003
2-Aryl-3-nitro-1,2-dihydroquinolines 3 were prepared from the reaction of â-nitrostyrenes 2 and
2-aminobenzaldehyde 1 in the presence of DABCO. Not only â-nitrostyrenes but other alkyl nitro
olefins also can be used in this reaction as well. When DDQ or silica gel was added to a solution of
3-nitro-1,2-dihydroquinolines 3, 3-nitro-2-substituted-quinolines 4 were obtained. When 2-ami-
nobenzaldehyde derivatives 7 and 12 were reacted with â-nitrostyrenes 2, unique rearrangement
products were produced.
SCHEME 1. Con d en sa tion of Nitr o Com p ou n d s
w ith 2-Am in o Ca r bon yl Com p ou n d s
In tr od u ction
Quinolines1-5 are important and widely used hetero-
cyclic compounds in organic chemistry, and a variety of
methods for the preparation of nitroquinolines have been
reported.2 Three general methods are typically used to
prepare nitroquinolines. First, nitroquinolines can be
prepared by the nitration of quinolines.2a,g,h,j However,
several regioisomers occur during the nitration. Second,
3-nitro-2-substituted quinolines can also be prepared via
the reaction of 3-nitroquinoline N-oxide with limited
reactants.2i,f Third, a method involving a modified Fried-
lander synthesis1e involves the condensation of certain
nitro compounds with 2-amino carbonyl compounds
(Scheme 1).2b-e The preparation of 2-aryl-3-nitroquino-
lines from the condensation of 2-aminobenzaldehyde and
ω-nitroacetophenones has been reported by Baumgarten
and Saylor.2e We herein describe an easy and convenient
method for the selective preparation of 1,2-dihydro-2-
substituted 3-nitroquinolines and 2-aryl-3-nitroquinolines
(eq 1). 1,2-Dihydroquinolines are usually prepared by the
reduction3 of quinolines or by the nucleophilic attack4 of
quinolines and are useful in preparing some biologically
active quinoline derivatives.5 Our work expands the scope
of this reaction to include 1,2-dihydroquinolines.
(1) (a) Rees, C. W.; Smithen, C. E. Adv. Heterocycl. Chem. 1964, 3,
57. (b) Popp, F. D. Adv. Heterocycl. Chem. 1968, 9, 1. (c) Crawforth, C.
E.; Meth-Cohen, O.; Russell, C. A. J . Chem. Soc., Perkin Trans. 1 1972,
2807. (d) Vierhapper, F. W.; Eliel, E. L. J . Am. Chem. Soc., 1974, 96,
2256. (e) Cheng, C.; Yan, S. Org. React. 1982, 28, 37. (f) Popp, F. D.;
Uff, B. B. Heterocycles 1985, 23, 731. (g) Minisci, F.; Vismara, E.;
Fontana, F. J . Org. Chem. 1989, 54, 5224.
(2) (a) Bacharach, G.; Haut, A. H.; Caroline, L. Recl. Trav. Chim.
Pays-Bas. 1933, 413. (b) Schofield, K.; Theobald, R. S. J . Chem. Soc.
1950, 395. (c) Schofield, K.; Theobald, R. S. J . Chem. Soc. 1951, 2992.
(d) Ockenden, D. W.; Schofield, K. J . Chem. Soc. 1953, 3914. (e)
Baumgarten, H. E.; Saylor, J . L. J . Am. Chem. Soc. 1957, 79, 1502. (f)
Sharma, K. S.; Kumari, S.; Singh, R. P. Synthesis 1981, 316. (g)
Arnestad, Berit; Bakke, J . M.; Hegbom, I.; Ranes, E. Acta Chem. Scand.
1996, 50, 556. (h) Bakke, J . M.; Ranes, E. Synthesis 1997, 281. (i)
Nakagawa, H.; Higuchi, T.; Kikuchi, K. K.; Urano, Y.; Nagano, T.
Chem. Pharm. Bull. 1998, 46, 1656. (j) Bakke, J . M.; Ranes, E.; Riha,
J .; Svensen, H. Acta Chem. Scand. 1999, 53, 141.
(3) (a) Forrest, T. P.; Dauphinee, G. A.; Deraniyagala, S. A. Can. J .
Chem. 1985, 63, 412. (b) Bubnov, Y. N.; Evchenko, S. V.; Ignatenko,
A. V. Bull. Russ. Acad. Sci. Div. Chem. Sci. 1992, 41, 2239. (c) Heier,
R. F.; Dolak, L. A.; Duncan, J . N.; Hyslop, D. K.; Lipton, M. F.; Martin,
I. J .; Mauragis, M. A.; Piercey, M. F.; Nichols, N. F.; Schreur, P. J . K.
D.; Smith, M. W.; Moon, M. W. J . Med. Chem. 1997, 40, 639.
(4) (a) Geissman, T. A.; Schlatter, M. J .; Webb, I. D.; Roberts, J . D.
J . Org. Chem. 1946, 11, 741. (b) Gilman, H.; Eisch, J .; Soddy, T. S. J .
Am. Chem. Soc. 1959, 81, 4000. (c) Goldstein, S. W.; Dambek, P. J .
Synthesis 1989, 221. (d) Uno, H.; Okada, S.; Suzuki, H. Tetrahedron
1991, 47, 6231. (e) Kratzel, M.; Hiessboeck, R. Heterocycles 1995, 41,
897.
(5) (a) Paris, D.; Cottin, M.; Demonchaux, P.; Augert, G.; Dupas-
sieux, P.; Lenoir, P.; Peck, M. J .; J asserand, D. J . Med. Chem. 1995,
38, 669. (b) Heier, R. F.; Dolak, L. A.; Duncan, J . N.; Hyslop, D. K.;
Lipton, M. F.; Martin, I. J .; Mauragis, M. A.; Piercey, M. F.; Nichols,
N. F.; Schreur, P. J . K. D.; Smith, M. W.; Moon, M. W. J . Med. Chem.
1997, 40, 639. (c) Hiessbock, R.; Wolf, C.; Richter, E.; Hitzler, M.; Chiba,
P.; Kratzel, M.; Ecker, G. J . Med. Chem. 1999, 42, 1921.
10.1021/jo030070z CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/12/2004
J . Org. Chem. 2004, 69, 1565-1570
1565