We are grateful to the National Natural Science Foundation
of China (20802070), the Zhejiang Provincial Natural Science
Foundation (Y4110044) and the Research foundation from
Key Laboratory of Synthetic Organic Chemistry of Natural
Substances, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences. RAF is grateful to the National Science
Foundation (CHE-0844946) for support of the work at Lehigh
University. We are thankful to Prof. Gangguo Zhu for helpful
discussion.
Scheme 3 The reactions of the substrates with different location of
the CQC bond.
Notes and references
1 For selected recent reviews of SmI2-mediated carbonyl–alkene
reactions, see: (a) H. Y. Harb and D. J. Procter, Synlett, 2012, 6;
(b) D. J. Procter, R. A. Flowers and T. Skrydstrup, Organic
Synthesis Using Samarium Diiodide: A Practical Guide, Royal
Society of Chemistry, London, 2010, ch. 5; (c) K. C. Nicolau,
S. P. Ellery and J. S. Chen, Angew. Chem., Int. Ed., 2009, 48, 7140;
(d) K. Gopalaiah and H. B. Kagan, New J. Chem., 2008, 32, 607;
(e) D. J. Edmonds, D. Johnston and D. J. Procter, Chem. Rev.,
2004, 104, 3371; (f) P. G. Steel, J. Chem. Soc., Perkin Trans. 1,
2001, 2727; (g) A. Krief and A.-M. Laval, Chem. Rev., 1999,
99, 745; (h) G. A. Molander and C. R. Harris, Tetrahedron,
1998, 54, 3321.
2 D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara,
P. A. Bradley, R. A. Flowers II and D. J. Procter, J. Am. Chem.
Soc., 2009, 131, 15467.
3 (a) D. Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley
and D. J. Procter, J. Am. Chem. Soc., 2011, 133, 2418;
(b) K. D. Collins, J. M. Oliveira, G. Guazzelli, B. Sautier, S. De
Grazia, H. Matsubara, M. Helliwell and D. J. Procter, Chem.–Eur.
J., 2010, 16, 10240.
4 B. Sautier, S. E. Lyons, M. R. Webb and D. J. Procter, Org. Lett.,
2012, 14, 146.
5 M. Szostak, M. Spain and D. J. Procter, Chem. Commun., 2011,
47, 10254.
6 (a) X. D. Liu, S. L. Zhang and J. C. Di, Synthesis, 2009, 2749;
(b) J. C. Di and S. L. Zhang, Synlett, 2008, 1491; (c) Z. F. Li,
X. J. Cao, G. Q. Lai, J. H. Liu, Y. Ni, J. R. Wu and H. Y. Qiu,
J. Organomet. Chem., 2006, 691, 4740; (d) X. S. Fan and
Y. M. Zhang, Tetrahedron Lett., 2002, 43, 5475; (e) Z. F. Li and
Y. M. Zhang, Tetrahedron, 2002, 58, 5301; (f) J. Q. Wang,
J. Q. Zhou and Y. M. Zhang, Synth. Commun., 1996, 26, 3395.
7 (a) Y. Y. Hu, T. Zhao and S. L. Zhang, Chem.–Eur. J., 2010,
16, 1697; (b) Z. Y. Zhong, R. Hong and X. X. Wang, Tetrahedron
Lett., 2010, 51, 6763.
8 (a) M. Shabangi and R. A. II Flowers, Tetrahedron Lett., 1997,
38, 1137; (b) J. B. Shotwell, J. M. Sealy and R. A. II Flowers,
J. Org. Chem., 1999, 64, 5251; (c) E. Prasad and R. A. II Flowers,
J. Am. Chem. Soc., 2002, 124, 6895; (d) E. Prasad, B. W. Knettle
and R. A. II Flowers, J. Am. Chem. Soc., 2004, 126, 6891;
(e) D. V. Sadasivam, P. K. S. Antharjanam and R. A. II Flowers,
J. Am. Chem. Soc., 2008, 130, 7228; (f) K. A. Choquette,
D. V. Sadasivam and R. A. II Flowers, J. Am. Chem. Soc., 2010,
132, 17396.
Scheme 4 A probable mechanism.
In the case of substrate 1q (R1 = Ph, R2 = Me), steric
hindrance may occur and the formation of VII was thus not as
favored, accounting for the poor stereoselectivity observed therein.
The proposed mechanism could further be rationalized by
the isolation of by-product 5a (Scheme 4). Compound 4,
however, could not be obtained by either decreasing the
amount of reducing agent or introducing 1,4-cyclohexadiene11
as the H-donor, indicating a very high efficiency for the
transformation of V into VI.
The reductive potentials of allylSmBr and allylSmBr–HMPA
in THF were determined using cyclic voltammetry (see ESIw).12
The addition of HMPA shifts the reductive peak potential
approximately 760 mV to more negative values, indicating that
HMPA enhances the reducing ability of allylSmBr significantly.
Redox potentials can be estimated from the oxidation and
reduction peaks of the quasi-reversible voltammograms of
Sm-allylBr and were found to be À1.84 Æ 0.01 V in THF.
For Sm-allylBr–HMPA the potential was found to be À2.60 Æ
0.01 V. These values are close (but not identical) to those
determined for SmBr2 and SmBr2–HMPA.13
9 K. Lam and I. E. Marko, Org. Lett., 2009, 11, 2752.
´
10 (a) M. Szostak, M. Spain, D. Parmar and D. J. Procter, Chem.
Commun., 2012, 48, 330; (b) G. Guazzelli, S. D. Grazia,
K. D. Collins, H. Matsubara, M. Spain and D. J. Procter,
J. Am. Chem. Soc., 2009, 131, 7214.
11 Y. Miller, L. Miao, A. S. Hosseini and S. R. Chemler, J. Am.
Chem. Soc., 2012, 134, 12149.
12 (a) M. Shabangi, M. L. Kuhlman and R. A. II Flowers, Org. Lett.,
1999, 1, 2133; (b) R. J. Enemaerke, T. Hertz, T. Skrydstrup and
K. Daasbjerg, Chem.–Eur. J., 2000, 6, 3747.
In summary, we have achieved the first example of aliphatic
acyclic ester–alkene radical cyclization promoted by allylSmBr
with HMPA and H2O as the co-additives. The additives were
found to have inhibited the nucleophilicity and enhanced the
SET ability of allylSmBr. Besides, the reaction provides a facile
and diastereoselective synthesis of cis-2-(2-hydroxyalkyl)cyclo-
propanols14 from the readily available homoallyl esters.
Further investigation of the reductive species present in the
allylSmBr–HMPA system, the exact role of HMPA and H2O,
the use of various additives to tune the SET ability and more
synthetic applications of the allylsamarium–additive system is
currently underway and will be reported in due course.
13 B. W. Knettle and R. A. II Flowers, Org. Lett., 2001, 3, 2321.
14 (a) H. G. Lee, I. L. Lysenko and J. K. Cha, ARKIVOC, 2008, 133;
(b) L. G. Quan, S.-H. Kim, J. C. Lee and J. K. Cha, Angew. Chem.,
Int. Ed., 2002, 41, 2160; (c) J. Lee, C. H. Kang, H. Kim and
J. K. Cha, J. Am. Chem. Soc., 1996, 118, 291; (d) A. Kasatkin and
F. Sato, Tetrahedron Lett., 1995, 36, 6079.
c
11028 Chem. Commun., 2012, 48, 11026–11028
This journal is The Royal Society of Chemistry 2012