Organic Letters
Letter
a
Scheme 4. Ring Expansion Reaction
Full experimental details and characterization data for all
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
†Z.G. and H.W. contributed equally to this work.
Notes
The authors declare no competing financial interest.
a
n
ACKNOWLEDGMENTS
Standard conditions: 1 (0.3 mmol), 2 (0.5 mmol), Bu4NBF4 (0.25
mmol), MeCN (6.0 mL), C anode, Fe cathode, undivided cell,
constant current = 10 mA, room temperature, N2, 2 h, isolated yield.
■
This work was supported by the National Natural Science
Foundation of China (21520102003) and the Hubei Province
Natural Science Foundation of China (2017CFA010). The
Program of Introducing Talents of Discipline to Universities of
China (111 Program) is also appreciated.
b
MeCN (11 mL), H2O (1 mL).
Scheme 5. Reaction Scale-up
REFERENCES
■
(1) (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529−2591.
́
́
(b) Wang, J.; Sanchez-Rosello, M.; Acen
̃
a, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432−2506. (c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.;
Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315−8359.
(d) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L.
Angew. Chem., Int. Ed. 2015, 54, 11839−11842. (e) Zhou, Y.; Wang, J.;
Scheme 6. Control Experiments
Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.;
̃
Liu, H. Chem. Rev. 2016, 116, 422−518. (f) Rong, J.; Deng, L.; Tan, P.;
Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743−2747.
(g) Ouyang, Y.; Xu, X. H.; Qing, F. L. Angew. Chem., Int. Ed. 2018, 57,
6926−6929. (h) Xie, Q.; Li, L.; Zhu, Z.; Zhang, R.; Ni, C.; Hu, J. Angew.
Chem., Int. Ed. 2018, 57, 13211−13215. (i) Yu, X.-L.; Chen, J.-R.;
Chen, D.-Z.; Xiao, W.-J. Chem. Commun. 2016, 52, 8275−8278.
(j) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org.
Lett. 2015, 17, 4464−4467. (k) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng,
X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668−7672. (l) Cheng,
Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed.
2017, 56, 8883−8886. (m) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C.
J. Am. Chem. Soc. 2017, 139, 1388−1391. (n) Sahoo, B.; Li, J. L.;
Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577−11580.
(2) Rice, K. D.; Kim, M. H.; Bussenius, J.; Anand, N. K.; Blazey, C. M.;
Bowles, O. J.; Canne-Bannen, L.; Chan, D. S. M.; Chen, B.; Co, E. W.;
Costanzo, S.; DeFina, S. C.; Dubenko, L.; Engst, S.; Franzini, M.;
Huang, P.; Jammalamadaka, V.; Khoury, R. G.; Klein, R. R.; Laird, A.
D.; Le, D. T.; Mac, M. B.; Matthews, D. J.; Markby, D.; Miller, N.; Nuss,
J. M.; Parks, J. J.; Tsang, T. H.; Tsuhako, A. L.; Wang, Y.; Xu, W. Bioorg.
Med. Chem. Lett. 2012, 22, 2693−2697.
(3) (a) Lubczyk, V.; Bachmann, H.; Gust, R. J. Med. Chem. 2002, 45,
5358−5364. (b) Huang, H. L.; Yan, H.; Gao, G. L.; Yang, C.; Xia, W.
Asian J. Org. Chem. 2015, 4, 674−677.
form (3,3,3-trifluoroprop-1-ene-1,1-diyl)dibenzene when we
used 1,1-diphenylethylene as a radical scavenger (Scheme 6c).
These above results suggested that this transformation might
involve a radical pathway.
In summary, we have developed an unprecedented electro-
chemical oxidative aryl(alkyl)trifluoromethylation of allyl
alcohols via 1,2-migration. Not only aryl groups but also alkyl
groups could migrate in this transformation, which provides a
convenient method for the synthesis of various β-trifluoro-
methyl ketone compounds without metals and sacrificial
oxidants. Additionally, electrochemically catalyzed ring ex-
pansion was also realized by the migration route. Importantly,
gram-scale reaction demonstrated the synthetic usefulness of
this protocol. Ongoing research including further mechanistic
details and expanding the methodology to other heteroatom
substrates are currently underway.
(4) (a) Park, S.; Joo, J. M.; Cho, E. J. Eur. J. Org. Chem. 2015, 2015,
4093−4097. (b) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X.
Angew. Chem., Int. Ed. 2013, 52, 6962−6966. (c) Egami, H.; Shimizu,
R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346−7348.
(d) Cai, S.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M.
Adv. Synth. Catal. 2018, 360, 4084−4088. (e) Wang, H.; Xu, Q.; Yu, S.
Org. Chem. Front. 2018, 5, 2224−2228. (f) Kang, J.-C.; Tu, Y.-Q.;
Dong, J.-W.; Chen, C.; Zhou, J.; Ding, T.-M.; Zai, J.-T.; Chen, Z.-M.;
Zhang, S.-Y. Org. Lett. 2019, 21, 2536−2540.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(5) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei,
A. Chem. Rev. 2017, 117, 9016−9085.
C
Org. Lett. XXXX, XXX, XXX−XXX