Angewandte
Chemie
solvent was removed in vacuo to give 15c[25] (168 mg, 65%) as a
colorless oil after chromatography (50:1 hexane/Et2O). 1H NMR
(200 MHz): d = 7.62–7.50 (m, 4H), 7.45–7.30 (m, 4H), 7.21 (d, 2H, J =
8.9 Hz), 6.90 (d, 2H, J = 8.9 Hz), 3.89 ppm (s, 3H); 13C NMR
(50.3MHz): d = 159.0, 142.4, 141.1, 140.8, 134.6, 131.6, 131.3, 131.2,
130.5, 129.4, 128.5, 128.1, 127.7, 127.4, 127.0, 114.0, 55.7 ppm.
Chem. 2003, 11, 1371; N. Murugesan, Z. Gu, S. Spergel, M.
Young, P. Chen, A. Mathur, L. Leith, M. Hermsmeier, E. C.-K.
Liu, R. Zhang, E. Bird, T. Waldron, A. Marino, B. Koplowitz,
W. G. Humphreys, S. Chong, R. A. Morrison, M. L. Webb, S.
Moreland, N. Trippodo, J. C. Barrish, J. Med. Chem. 2003, 46,
125; Y. M. Choi-Sledeski, R. Kearney, G. Poli, H. Pauls, C.
Gardner, Y. Gong, M. Becker, R. Davis, A. Spada, G. Liang, V.
Chu, K. Brown, D. Collussi, R. Leadley, S. Rebello, P. Moxey, S.
Morgan, R. Bentley, S. Lasiewshi, S. Maignan, J.-P. Guilloteau, V.
Mikol, J. Med. Chem. 2003, 46, 681.
Received: August 12, 2003 [Z52633]
Keywords: arenes · cross-coupling · magnesium · nickel ·
.
[14] Excess Grignard reagent was necessary. [Ni(cod)] (cod = cyclo-
octa-1,5-diene), NiCl2, and Ni(OAc)2 gave negligible reduction.
[NiCp2] was found to be an effective catalyst. The control
experiment without catalyst gave no reaction. Catalyst loadings
of 1 mol% gave slightly lower yields. Use of THFand hexanes as
solvents and the addition of phosphane ligands gave poor yields.
The nature of the amine portion of the sulfonamide (e.g.
sterically demanding or aromatic) had a negligible influence on
the yield. Secondary amines were inert to the reaction con-
ditions, possibly due to the insolubility of their magnesium salts.
[15] M. Alami, C. Amatore, S. Bensalem, A. Choukchou-Brahim, A.
Jutand, Eur. J. Inorg. Chem. 2001, 2675.
[16] Other cyclic sulfonamides gave synthetically unproductive
results: 2-methyl-3,3-diphenyl-2,3-dihydro-benzo[d]isothiazole
1,1-dioxide was inert while 2-methyl-1,1-dioxo-1,2-dihydro-D6-
benzo[d]isothiazol-3-one (N-methyl saccharin) gave N-methyl-
benzamide in 15% yield.
[17] For Suzuki cross-coupling chemistry of aryl sulfonamides, see:
S. L. MacNeil, O. B. Familoni, V. Snieckus, J. Org. Chem. 2001,
66, 3662.
[18] H Tomori, J. M. Fox, S. L. Buchwald, J. Org. Chem. 2000, 65,
1158; B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999,
576, 125.
[19] Use of Pd(OAc)2, [Pd(PPh3)4] and [Pd(dppp)]Cl2 resulted in
complex mixtures. The [NiCl2]–dppp combination was an
ineffective catalyst, while under [Ni(acac)2] alone, cross-cou-
pling products were obtained in low yields.
[20] E. Wenkert, M. E. Shepard, A. T. McPhail, J. Chem. Soc. Chem.
Commun. 1986, 1390.
[21] Recently, the conversion of 7i!15b (Table 3) was effected at
room temperature in 54% yield in the presence of catalytic
[CpNi(IMes)Cl]: C. D. Abernethy, A. H. Cowley, R. A. Jones, J.
Organomet. Chem. 2000, 596, 3; R. R. Milburn, A. Pla, V.
Snieckus, unpublished results (Mes = mesityl = 2,4,6-trimethyl-
phenyl).
[22] For other directed ortho metalation–cross-coupling links, see: J.-
G. Anctil, V. Snieckus, J. Organomet. Chem. 2002, 653, 150.
[23] For the use of reductive chemistry in the development of a new
amine-protecting group, see subsequent communication in this
issue: R. R. Milburn, V. Snieckus, Angew. Chem. 2004, 116, 910;
Angew. Chem. Int. Ed. 2004, 43, 892.
sulfonamides
[1] For a summary, see the special issue dedicated to the field: Eds.:
K. Tamao, T. Hiyama, E.-i. Negishi, J. Organomet. Chem. 2002,
653; Stille coupling: I. P. Beletskaya, J. Organomet. Chem. 1983,
250, 551; Negishi coupling: A. O. King, E.-i. Negishi, F. J. Villani,
A. Silveira, J. Org. Chem. 1978, 43, 358; I. Klement, M.
Rottlander, C. E. Tucker, T. N. Majid, P. Knochel, P. Venegas,
G. Cahiez, Tetrahedron 1996, 52, 7201; Hiyama coupling: Y.
Hatanaka, T. Hiyama, Synlett 1991, 845; S. E. Denmark, T. F.
Sweis, Acc. Chem. Res. 2002, 35, 835; Suzuki – Miyaura coupling:
N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 867;
S. Kotha, K. Lahiri, S. Kashinath, Tetrahedron 2002, 58, 9633;
Corriu – Kumada – Tamao reaction: K. Tamao, K. Sumitani, M.
Kumada, J. Am. Chem. Soc. 1972, 94, 4374; R. J. P. Corriu, J. P.
Masse, J. Chem. Soc. Chem. Commun. 1972, 144; for a recent
copper-catalyzed coupling of siloxanes, see: P. Y. S. Lam, S.
Deudon, K. M. Averill, R. Li, M. Y. He, P. DeShong, C. G. Clark,
J. Am. Chem. Soc. 2000, 122, 7600; for the copper-catalyzed
coupling of boronic acids, see: P. Y. S. Lam, C. G. Clark, S.
Saubern, J. Adams, M. P. Winters, D. M. T. Chan, A. Combs,
Tetrahedron Lett. 1998, 39, 2941; P. Y. S. Lam, D. Bonne, G.
Vincent, C. G. Clark, A. P. Combs, Tetrahedron Lett. 2003, 44,
1691; for iron-catalyzed coupling, see: A. Fürstner, A. Leitner,
M. M. Menendez, H. Krause, J. Am. Chem. Soc. 2002, 124,
13856, and references therein.
[2] N. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org. Chem.
2002, 67, 5553; A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114,
4350; Angew. Chem. Int. Ed. 2002, 41, 4176.
[3] J. E. McMurry, S. Mohanraj, Tetrahedron Lett. 1983, 24, 2723.
[4] S. Sengupta, M. Leite, D. S. Raslan, C. Quesnelle, V. Snieckus, J.
Org. Chem. 1992, 57, 4066.
[5] E. Wenkert, T. W. Ferreira, Michelotti, E. L. J. Chem. Soc.
Chem. Commun. 1979, 637; E. Wenkert, T. W. Ferreira, J. Chem.
Soc. Chem. Commun. 1982, 840.
[6] C. Quesnelle, T. Iihama, T. Aubert, H. Perrier, V. Snieckus,
Tetrahedron Lett. 1992, 33, 2625.
[7] M. Iwao, T. Iihama, K. K. Mahalanabis, H. Perrier, C. Snieckus,
J. Org. Chem. 1989, 54, 24.
[8] J. Clayden, M. Julia, J. Chem. Soc. Chem. Commun. 1993, 1682; J.
Clayden, J. A. Cooneym, M. Julia, J. Chem. Soc. Perkin Trans. 1
1995, 7.
[24] S. Saito, S. Oh-tani, N. Miyaura, J. Org. Chem. 1997, 62, 8024.
[25] B. M. Trost, H. C. Arndt, J. Am. Chem. Soc. 1973, 95, 5288.
[9] H. Okamura, M. Miura, H. Takei, Tetrahedron Lett. 1979, 20, 43 .
[10] C.-H. Cho, H.-S. Yun, K. Park, J. Org. Chem..2003, 69, 3017.
[11] K. Tamao, K. Sumitani, Y. Kiso, S. F. Zembayashi, S. Kodama, I.
Nakajima, A. Minato, M. Kumada, Bull. Chem. Soc. Jpn. 1976,
49, 1958; M. Kumada, Pure Appl. Chem. 1980, 52, 669.
[12] V. Snieckus, Chem. Rev. 1990, 90, 879.
[13] See also: Annu. Rep. Med. Chem. 2002, 37, pp. 3, 4, 17, 46 – 48,
54 – 57, 66, 70, 72, 81, 87, 88, 91, 131, 135, 136, 139, 142, 242, 252;
G. Bouchain, S. Leit, S. Frechette, E. A. Khalil, R. Lavoie, O.
Moradei, S. H. Woo, M. Fournel, P. T. Yan, A. Lakita, M.-C.
Trachy-Bourget, C. Beaulieu, Z. Li, M.-F. Robert, R. MacLeod,
J. M. Besterman, D. Delorme, J. Med. Chem. 2003, 46, 820; E.
Pomarnzcka, M. Gdaniec, Bioorg. Med. Chem. 2003, 11, 1259;
M. Nakamura, M. Yamaguchi, O. Sakai, J. Inoue, Bioorg. Med.
Angew. Chem. Int. Ed. 2004, 43, 888 –891
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
891