2306
Russ.Chem.Bull., Int.Ed., Vol. 53, No. 10, October, 2004
Ivanchikova and Shvartsberg
Table 2. Yields, elemental analysis data, and physicochemical and spectroscopic characteristics of acetylenic ketones 2a—e and 3a,b
Comꢀ Yield M.p.*
Found
Calculated
Molecular
formula
1H NMR, δ (J/Hz)
IR,
ν/cm–1
(%)
Cl
poꢀ
(%)
/°С
und
С
Н
2a
2b
70
183—
183.5
74.48 3.14 9.65
74.50 2.99 9.56
С23Н11ClО3 7.35—7.55 (m, 3 H, 3 HPh); 7.60—7.70 (m, 2 H,
2 HPh); 7.75—7.90 (m, 2 H, H(6), Н(7));
1670, 1690
(С=О);
2205
(С≡С)
1670,
1690
(С=О);
2195
(С≡С)
1670, 1690
(С=О);
2225 (С≡С);
3400 br,
3610 (OH)
1670,
1690
(С=О);
2220
8.05 (d, 1 H, H(3), J = 7.9); 8.25—8.35 (m, 2 H,
H(5), Н(8)); 8.41 (d, 1 H, H(4), J = 7.9)
63
65
65
52
168—
169
73.80 4.19 9.61
73.70 4.03 9.46
С23Н15ClО3 1.45—1.75, 2.10—2.30 (both m, 4 H each, C(4´)H2,
C(5´)H2, C(3´)H2, C(6´)H2); 6.55—6.60 (m, 1 H,
C(2´)H); 7.75—7.90 (m, 2 H, H(6), Н(7)); 7.95 (d,
1 H, H(3), J = 8.0); 8.20—8.35 (m, 2 H, H(5),
Н(8)); 8.36 (d, 1 H, H(4), J = 8.0)
С20Н13ClО4 1.62 (s, 6 H, Me); 2.20 (br.s, 1 H, OH);
7.75—7.85 (m, 2 H, H(6), Н(7)); 7.94 (d, 1 H,
H(3), J = 8.0); 8.20—8.30 (m, 2 H, H(5), Н(8));
8.35 (d, 1 H, H(4), J = 8.0)
2c
2d
2e
145—
146.5
68.23 3.89 10.08
68.09 3.71 10.05
130—
130.5
71.68 4.22 10.19
71.90 4.31 10.11
С21Н15ClО3 0.92 (t, 3 H, Me, J = 7.2); 1.40—1.65 (m, 4 H,
βꢀCH2, γꢀCH2); 2.47 (t, 2 H, αꢀCH2, J = 7.0);
7.75—7.85 (m, 2 H, H(6), Н(7)); 7.94 (d, 1 H,
H(3), J = 8.0); 8.20—8.30 (m, 2 H, H(5), Н(8));
8.36 (d, 1 H, H(4), J = 8.0)
С21Н13ClО3 1.75, 1.87 (both d, 3 H each, MeCH=C, E isomer,
Z isomer, J = 7.0); 1.92, 1.95 (both br.s, 3 H each,
MeC=C, Z isomer, E isomer); 6.10—6.20,
(С≡С)
1670,
1690
(С=О);
2200
(С≡С)
177—
178.5
73.29 3.40 10.00
72.32 3.76 10.16
6.35—6.45 (both m, 1 H each, CH=C, Z isomer,
E isomer); 7.75—7.90 (m, 2 H, H(6), Н(7)); 7.95,
7.98 (both d, 1 H each, H(3), E isomer, Z isomer,
J = 8.0); 8.20—8.35 (m, 2 H, H(5), Н(8));
8.37, 8.38 (both d, 1 H each, H(4), E isomer,
Z isomer, J = 8.0)
3a
3b
76
232—
233
74.68 3.09 10.06
74.50 2.99 9.56
С23Н11ClО3 7.40—7.55 (m, 3 H, 3 HPh); 7.65—7.75 (m, 2 H,
2 HPh); 7.80—7.90, 8.30—8.40 (both m, 2 H each,
1670, 1690
(С=О);
H(6), Н(7), H(5), Н(8)); 8.40, 8.97 (both s, 1 H each, 2205
H(1), H(4))
С23Н15ClО3 1.55—1.70, 2.20—2.35 (both m, 4 H each, C(4´)H2,
C(5´)H2, C(3´)H2, C(6´)H2); 6.60—6.70 (m, 1 H,
C(2´)H); 7.80—7.90, 8.30—8.40 (both m, 2 H each,
(С≡С)
1680,
1690
(C=O);
49 149.5— 73.76 4.25 9.56
150.5 73.70 4.03 9.46
H(6), Н(7), H(5), Н(8)); 8.35, 8.85 (both s, 1 H each, 2230
H(1), H(4)) (C≡C)
* Benzene—hexane.
prepared from 2ꢀchloroanthraquinoneꢀ3ꢀcarboxylic acid (9)
analogously to acid chloride 6, with phenylacetylene (5a) (0.43 g,
4.2 mmol) was carried out under the conditions used in the
synthesis of ketone 2a in the presence of Et3N (0.72 g, 7.1 mmol),
Pd(PPh3)2Cl2 (20 mg), and CuI (20 mg) in benzene (40 mL).
The reaction mixture was diluted with hexane (60 mL) and
cooled. The precipitate that formed was filtered off, dissolved in
trichloroethylene (150 mL) with heating, and filtered through a
thin SiO2 layer under pressure. The solvent was distilled off
in vacuo and the residue was recrystallized from toluene. The
yield of ketone 3a was 0.60 g (see Table 2).
ride 7 (0.58 g, 1.9 mmol) and 1ꢀethynylcyclohexene (5b) (0.35 g,
3.3 mmol). The yield was 0.35 g (see Table 2).
2ꢀPhenylanthra[1,2ꢀb]thiopyranꢀ4,7,12ꢀtrione (1a). Chloroꢀ
anthraquinone 2a (0.52 g, 1.4 mmol) was added to a suspension
of Na2S (0.50 g, 6.4 mmol) in 95% EtOH (90 mL) with heatꢀ
ing (~60 °C). The reaction mixture was refluxed with stirring
for 15 min, cooled, poured into water (500 mL), and extracted
with CHCl3 (3×100 mL). The chloroform solution was washed
with water and dried with MgSO4. The solvent was removed
in vacuo. The crude product was purified by chromatography
on SiO2 in CHCl3 and crystallization from a toluene—hexane
mixture. The yield of anthrathiopyrantrione 1a was 0.42 g (see
Table 1).
2ꢀChloroꢀ3ꢀ[3ꢀ(1ꢀcyclohexenyl)ꢀ1ꢀoxopropynyl]anthraquiꢀ
none (3b) was prepared analogously to ketone 3a from acid chloꢀ