Journal of the American Chemical Society
Communication
̈
(17) Vidal, F.; Jakle, F. Functional Polymeric Materials Based on
Main Group Elements. Angew. Chem., Int. Ed. 2019, 58, 5846.
Notes
The authors declare no competing financial interest.
̈
(18) Alahmadi, A. F.; Lalancette, R. A.; Jakle, F. Highly Luminescent
Ladderized Fluorene Copolymers Based on B-N Lewis Pair
Functionalization. Macromol. Rapid Commun. 2018, 39 (22),
No. 1800456.
ACKNOWLEDGMENTS
■
(19) Wright, V. A.; Gates, D. P. Poly(p-phenylenephosphaalkene): A
Pi-Cojugated Macromolecule Containing P = C Bonds in the Main
Chain. Angew. Chem., Int. Ed. 2002, 41 (13), 2389−2392.
(20) Smith, R. C.; Protasiewicz, J. D. Conjugated Polymers
Featuring Heavier Main Group Element Multiple Bonds: A
Diphosphene-PPV. J. Am. Chem. Soc. 2004, 126 (8), 2268−2269.
(21) Cheng, Y.; Doyle, D. J.; Hitchcock, P. B.; Lappert, M. F. The β-
dialdiminato ligand [{N (C 6 H 3 Pr i 2−2, 6) C (H)} 2 CPh]: the
conjugate acid and Li, Al, Ga and In derivatives. Dalton Transactions
2006, No. 37, 4449−4460.
(22) Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust,
J.; Noltemeyer, M.; Roesky, H. W. Synthesis and Characterization of
HC {C (Me) N (C6H3−2, 6-i-Pr2)} 2MX2 (M= Al, X= Cl, I; M=
Ga, In, X= Me, Cl, I): Sterically Encumbered β-Diketiminate Group
13 Metal Derivatives. Inorg. Chem. 2001, 40 (12), 2794−2799.
(23) Ito, S.; Hirose, A.; Yamaguchi, M.; Tanaka, K.; Chujo, Y. Size-
discrimination of volatile organic compounds utilizing gallium
diiminate by luminescent chromism of crystallization-induced
emission via encapsulation-triggered crystal−crystal transition. J.
Mater. Chem. C 2016, 4 (24), 5564−5571.
(24) Kuhn, N.; Fahl, J.; Fuchs, S.; Steimann, M.; Henkel, G.;
Maulitz, A. H. Vinamidin-Chelate des Aluminiums und Galliums. Z.
Anorg. Allg. Chem. 1999, 625 (12), 2108−2114.
(25) Stork, J. R.; Thoi, V. S.; Cohen, S. M. Rare Examples of
Transition-Metal-Main-Group Metal Heterometallic Metal-Organic
Frameworks from Gallium and Indium Dipyrrinato Complexes and
Silver Salts: Synthesis and Framework Variability. Inorg. Chem. 2007,
46 (26), 11213−11223.
(26) Thoi, V. S.; Stork, J. R.; Magde, D.; Cohen, S. M. Luminescent
Dipyrrinato Complexes of Trivalent Group 13 Metal Ions. Inorg.
Chem. 2006, 45 (26), 10688−10697.
(27) Lundrigan, T.; Baker, A. E. G.; Longobardi, L. E.; Wood, T. E.;
Smithen, D. A.; Crawford, S. M.; Cameron, T. S.; Thompson, A. An
Improved Method for the Synthesis of F-BODIPYs from Dipyrrins
and Bis(dipyrrin)s. Org. Lett. 2012, 14 (8), 2158−2161.
(28) Luyt, L. G.; Katzenellenbogen, J. A. A Trithiolate Tripodal
Bifunctional Ligand for the Radiolabeling of Peptides with Gallium-
(III). Bioconjugate Chem. 2002, 13 (5), 1140−1145.
The authors thank the NSF (CHE-0847132) for support.
REFERENCES
■
(1) Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.; Boyer, J.
H.; Politzer, I. R.; Pavlopoulos, T. G. Pyrromethene−BF2 complexes
as laser dyes:1. Heteroat. Chem. 1990, 1 (5), 389−399.
(2) Baudron, S. A. Luminescent dipyrrin based metal complexes.
Dalton Transactions 2013, 42 (21), 7498−7509.
(3) Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Yu, L.; Bocian, D. F.;
Lindsey, J. S.; Holten, D. Structural control of the excited-state
dynamics of bis (dipyrrinato) zinc complexes: self-assembling
chromophores for light-harvesting architectures. J. Am. Chem. Soc.
2004, 126 (9), 2664−2665.
(4) Kusaka, S.; Sakamoto, R.; Kitagawa, Y.; Okumura, M.; Nishihara,
H. An Extremely Bright Heteroleptic Bis(dipyrrinato)zinc(II)
Complex. Chem. - Asian J. 2012, 7 (5), 907−910.
(5) Yang, L.; Zhang, Y.; Yang, G.; Chen, Q.; Ma, J. S. Zn(II) and
Co(II) mediated self-assembly of bis(dipyrrin) ligands with a
methylene spacer bridged at 3,3′-positions and their optical
properties. Dyes Pigm. 2004, 62 (1), 27−33.
(6) Filatov, M. A.; Lebedev, A. Y.; Mukhin, S. N.; Vinogradov, S. A.;
Cheprakov, A. V. π-Extended Dipyrrins Capable of Highly
Fluorogenic Complexation with Metal Ions. J. Am. Chem. Soc. 2010,
132 (28), 9552−9554.
(7) Ishida, M.; Naruta, Y.; Tani, F. A Porphyrin-Related Macrocycle
with an Embedded 1,10-Phenanthroline Moiety: Fluorescent
Magnesium(II) Ion Sensor. Angew. Chem., Int. Ed. 2010, 49 (1),
91−94.
(8) Ishida, M.; Lim, J. M.; Lee, B. S.; Tani, F.; Sessler, J. L.; Kim, D.;
Naruta, Y. Photophysical Analysis of 1,10-Phenanthroline-Embedded
Porphyrin Analogues and Their Magnesium(II) Complexes. Chem. -
Eur. J. 2012, 18 (45), 14329−14341.
(9) Hanson, K.; Tamayo, A.; Diev, V. V.; Whited, M. T.; Djurovich,
P. I.; Thompson, M. E. Efficient Dipyrrin-Centered Phosphorescence
at Room Temperature from Bis-Cyclometalated Iridium(III)
Dipyrrinato Complexes. Inorg. Chem. 2010, 49 (13), 6077−6084.
(10) Liu, X.; Nan, H.; Sun, W.; Zhang, Q.; Zhan, M.; Zou, L.; Xie,
Z.; Li, X.; Lu, C.; Cheng, Y. Synthesis and characterisation of neutral
mononuclear cuprous complexes based on dipyrrin derivatives and
phosphine mixed-ligands. Dalton Transactions 2012, 41 (34), 10199−
10210.
(11) Ikeda, C.; Ueda, S.; Nabeshima, T. Aluminium complexes of
N2O2-type dipyrrins: the first hetero-multinuclear complexes of
metallo-dipyrrins with high fluorescencequantum yields. Chem.
Commun. 2009, No. 18, 2544−2546.
(12) Jiang, X.-D.; Zhao, J.; Xi, D.; Yu, H.; Guan, J.; Li, S.; Sun, C.-L.;
Xiao, L.-J. A New Water-Soluble Phosphorus-Dipyrromethene and
Phosphorus-Azadipyrromethene Dye: PODIPY/aza-PODIPY. Chem. -
Eur. J. 2015, 21 (16), 6079−6082.
(13) Fihey, A.; Favennec, A.; Le Guennic, B.; Jacquemin, D.
Investigating the properties of PODIPYs (phosphorus-dipyrrome-
thene) with ab initio tools. Phys. Chem. Chem. Phys. 2016, 18 (14),
9358−9366.
(14) Kobayashi, J.; Kushida, T.; Kawashima, T. Synthesis and
Reversible Control of the Fluorescent Properties of a Divalent Tin
Dipyrromethene. J. Am. Chem. Soc. 2009, 131 (31), 10836−10837.
(15) Crawford, S. M.; Al-Sheikh Ali, A.; Cameron, T. S.; Thompson,
A. Synthesis and Characterization of Fluorescent Pyrrolyldipyrrinato
Sn(IV) Complexes. Inorg. Chem. 2011, 50 (17), 8207−8213.
(16) Y. Ren, F. J. In Main Group Strategies towards Functional Hybrid
(29) Cusnir, R.; Imberti, C.; Hider, C. R.; Blower, J. P.; Ma, T. M.
Hydroxypyridinone Chelators: From Iron Scavenging to Radiophar-
maceuticals for PET Imaging with Gallium-68. Int. J. Mol. Sci. 2017,
18 (1), 116.
(30) Bandoli, G.; Dolmella, A.; Tisato, F.; Porchia, M.; Refosco, F.
Mononuclear six-coordinated Ga(III) complexes: A comprehensive
survey. Coord. Chem. Rev. 2009, 253 (1), 56−77.
̌
̌
(31) Notni, J.; Simecek, J.; Hermann, P.; Wester, H.-J. TRAP, a
Powerful and Versatile Framework for Gallium-68 Radiopharmaceu-
ticals. Chem. - Eur. J. 2011, 17 (52), 14718−14722.
̈
(32) Velikyan, I.; Beyer, G. J.; Långstrom, B. Microwave-Supported
Preparation of 68Ga Bioconjugates with High Specific Radioactivity.
Bioconjugate Chem. 2004, 15 (3), 554−560.
(33) Berry, D. J.; Ma, Y.; Ballinger, J. R.; Tavare, R.; Koers, A.;
Sunassee, K.; Zhou, T.; Nawaz, S.; Mullen, G. E. D.; Hider, R. C.;
Blower, P. J. Efficient bifunctional gallium-68 chelators for positron
emission tomography: tris(hydroxypyridinone) ligands. Chem.
Commun. 2011, 47 (25), 7068−7070.
(34) Guo, H.; Yang, J.; Shenoy, N.; Miao, Y. Gallium-67-Labeled
Lactam Bridge-Cyclized α-Melanocyte Stimulating Hormone Peptide
for Primary and Metastatic Melanoma Imaging. Bioconjugate Chem.
2009, 20 (12), 2356−2363.
(35) Summer, D.; Grossrubatscher, L.; Petrik, M.; Michalcikova, T.;
Novy, Z.; Rangger, C.; Klingler, M.; Haas, H.; Kaeopookum, P.; von
Guggenberg, E.; Haubner, R.; Decristoforo, C. Developing Targeted
̈
Materials; Baumgartner, T., Jakle, F., Eds.; John Wiley & Sons Ltd.:
Chichester, 2018; pp 79−110.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX