HASSANKHANI ET AL.
9 of 10
can be seen, the Fe3O4@C/Ph SO3H catalysts with
acidic sites exhibited high catalytic activity with excellent
yield (96%) in shorter time than most of the reported
works.
REFERENCES
[1] J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH,
Weinheim 2005.
[2] S. Rostamnia, E. Doustkhah, Tetrahedron Lett. 2014, 55.
[3] A. Domling, Chem. Rev. 2006, 106, 17.
4 | CONCLUSION
[4] a) A. Alizadeh, S. Rostamnia, L.-G. Zhu, Tetrahedron 2006, 62,
5641; b) A. Alizadeh, N. Zohreh, S. Rostamnia, Tetrahedron
2007, 63, 8083; c) S. E. Doustkhah, Synlett 2015, 26, 1345; d) A.
Alizadeh, S. Rostamnia, L.-G. Zhu, Tetrahedron Lett. 2010, 51,
4750; e) S. Rostamnia, A. Hassankhani, RSC Adv. 2013, 3,
18626; f) S. Rostamnia, E. Doustkhah, J. Magn. Magn. Mater.
2015, 386, 111; g) S. Rostamnia, A. Morsali, Inorganica Chim.
Acta. 2014, 411, 113.
[5] A. M. Hussein, O. M. Ahmed, Bioorg. Med. Chem. 2010, 18,
2639.
[6] A. Hassankhani, B. Gholipour, S. Rostamnia, Polyhedron 2020,
175, 114217.
In summary, we developed the synthesis of novel
Fe3O4@C/Ph SO3H heterogeneous catalyst using an
environmentally friendly and atom-economical proce-
dure with aromatic sulfonic acid-active sites as an
effective and efficient catalyst for direct synthesis
of tetrazoloquinazolines. Various derivatives of
tetrazoloquinazolines were synthesized through our
method using a one-pot three component couplings
of
aromatic
aldehydes
and
dimedone
and
1,3-cyclohexanedione ketones in the presence of
2-aminotetrazole. The molecular structure of synthesized
[7] Y. Takayama, Y. Yoshida, M. Uehata, US Patent 2006,
7109208.
1
tetrazoloquinazolines was identified by H and 13C NMR
spectroscopy and other physical properies. The method
was green, with high yields of products, which the cata-
lyst system avoids the use of dangerous liquid acids.
[8] A. Fujii, H. Tanaka, M. Otsuki, T. Kawaguchi, K. Oshita, US
Patent 2005, 6930115.
[9] T. Takaya, M. Murata, K. Ito, US Patent 1988, 4725600.
[10] E. Doustkhah, S. Rostamnia, C. Len, R. Luque, Y. Bando,
K. C.-W. Wu, J. Kim, Y. Yamauchi, Y. Ide, Chem. – Eur. J.
2019, 25, 1614.
ACKNOWLEDGMENTS
The authors are thankful for financial supports from Iran
National foundation of Science (INSF).
[11] Y. Li, T. Leng, H. Lin, C. Deng, X. Xu, N. Yao, P. Yang, X.
Zhang, J. Proteome Res. 2007, 6, 4498.
[12] A. R. Kiasat, J. Davarpanah, J. Mol. Catal. A: Chem. 2013,
373, 46.
CONFLICT OF INTEREST
[13] D. Wang, D. Astruc, Chem. Rev. 2014, 114, 6949.
[14] Z. Fathi, E. Doustkhah, S. Rostamnia, F. Darvishi, A. Ghodsi,
Y. Ide, Int. J. Biol. Macromol. 2018, 117, 218.
[15] K. Ojaghi Aghbash, H. Alamgholiloo, N. Noroozi Pesyan, S.
Khaksar, S. Rostamnia, Mol. Catal. 2021, 499, 111252.
[16] L.-Y. Zeng, C. Cai, J. Comb. Chem. 2010, 12, 35.
[17] X. C. Wang, Y. Wei, Y. X. Da, Z. Zhang, Z. J. Quan, Heterocy-
cles 2011, 83, 2811.
The authors declare no competing interests.
AUTHOR CONTRIBUTIONS
Asadollah Hassankhani: Conceptualization; supervi-
sion. Behnam Gholipour: Investigation; methodology.
Sadegh Rostamnia: Supervision.
[18] S. Rostamnia, T. Rahmani, Appl. Organomet. Chem. 2015,
29, 471.
[19] S. Rostamnia, H. G. Hossieni, E. Doustkhah, J. Organomet.
Chem. 2015, 791, 18.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able in the supporting information of this article.
[20] A. Ahadi, H. Alamgholiloo, S. Rostamnia, X. Liu, M.
Shokouhimehr, D. A. Alonso, R. Luque, ChemCatChem 2019,
11, 4803.
ORCID
[21] H. Karimi-Maleh, S. Malekmohammadi, Y. Orooji, F. Karimi,
M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal,
V. K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, Ind. Eng.
Chem. Res. 2021, 60, 816.
[22] H. Alamgholiloo, S. Rostamnia, A. Hassankhani, X. Liu, A.
Eftekhari, A. Hasanzadeh, K. Zhang, H. Karimi-Maleh, S.
Khaksar, R. Varma, M. Shokouhimehr, J. Colloid Interface Sci.
2020, 567, 126.
[23] Z. Zhang, H. Duan, S. Li, Y. Lin, Langmuir 2010, 26, 6676.
[24] X. Sun, Y. Li, Angew. Chem., Int. Ed. 2004, 43, 597.
[25] V. G. Pol, L. L. Daemen, S. Vogel, G. Chertkov, Ind. Eng.
Chem. Res. 2010, 49, 920.