A R T I C L E S
Bovee-Geurts et al.
twists during photoisomerization.17,31 Methyl substituents at these
positions moderately to severely affect the quantum yield of
the photoreaction, the thermodynamics of the subsequent thermal
reactions and the signaling activity of the photoactivated
pigment.32,33 On the other hand, the 11-19 ethano-derivative
of retinal, which severely restricts the rotational freedom of the
C10H moiety, only moderately affects the kinetics of the
photocascade.34,35 Hence, this questions whether photoactivation
triggers major structural rearrangements in the C9-C11 moiety
of the chromophore.
Figure 1. Chemical structure of 11-cis retinal (11-Z) and the fluoro
derivatives used in this study. The structures are shown in the 12-s trans
conformation, which is dictated by the opsin binding pocket.
To further elucidate the special contribution of the C10H and
C12H sites to photoactivation of rhodopsin, we introduced a
fluorine label at either position. This label is not much larger
than the hydrogen at this position but much smaller than a
methyl group (van der Waals radii of about 0.14, 0.12, and 0.20
nm, respectively36,37), while its molecular mass is even larger
than that of a methyl group (19.0 versus 15.0 Da). In addition
fluorine is a very sensitive NMR label.
Since methyl and fluoro derivatives at the C14 position hardly
affect the signaling properties of rhodopsin,38-40 we exploited
the 14-F analogue as a reference. The structures of native 11-
cis retinal and the three 11-cis fluororetinals used in this study
are presented in Figure 1. The 10-F, 12-F, and 14-F fluoroana-
logues of rhodopsin have been successfully prepared before,41,42
but their analysis has so far been restricted to their spectral
properties and to preliminary photochemical and solution-state
NMR studies.38,40-44
active state, Meta II, that binds and activates its cognate G
protein transducin.7,11 Next to their rate of formation, the
intermediates in this cascade (Batho T blue-shifted intermediate
(BSI) f Lumi f Meta I T Meta II) can be distinguished by
their spectral properties and can be isolated by cryotrapping.1,12-14
The photochemical performance of the 11-cis retinal-opsin
couple is quite remarkable. Photoisomerization occurs with an
unprecedented quantum yield (0.65 ( 0.02) in a truly selective
reaction pathway (11-cis f all-trans), generating within 200 fs
a vibrationally hot intermediate (photorhodopsin) with a highly
distorted but already all-transoid chromophore, which within 1
ps proceeds to Batho containing a still highly strained all-trans
chromophore.15-19
According to a variety of resonance Raman, solid-state NMR,
and computational studies, the C10H and C12H elements play special
roles in the photoisomerization of the rhodopsin chromophore.16,20-30
The crystal structure of the first photoproduct Batho also suggests
that the C10-H and C12-H bonds have proceeded through major
Our objectives are to characterize for the three fluororhodop-
sins the photoreaction (Rho f Batho) and subsequent thermal
reaction cascade generating Meta II in comparison to native
rhodopsin in order to further enlighten the contribution of the
C10H and C12H elements of the chromophore to photoisomer-
ization and activation of rhodopsin. We have determined the
(10) Birge, R. R.; Vought, B. W. Methods Enzymol. 2000, 315, 143–
163.
(11) Ku¨hn, H. Prog. Retinal Eye Res. 1984, 3, 123–156.
(12) Yoshizawa, T.; Wald, G. Nature 1963, 197, 1279–1286.
(13) Yoshizawa, T. AdV. Biophys. 1984, 17, 5–67.
(14) Kliger, D. S.; Lewis, J. W. Isr. J. Chem. 1995, 35 (3-4), 289–307.
(15) Mathies, R. A.; Lugtenburg, J. In Molecular Mechanisms in Visual
Transduction; Stavenga, D. G., DeGrip, W. J., Pugh, E. N., Jr., Eds.;
Elsevier Science: Amsterdam, The Netherlands, 2000; pp 55-90.
(16) Kukura, P.; McCamant, D. W.; Yoon, S.; Wandschneider, D. B.;
Mathies, R. A. Science 2005, 310 (5750), 1006–1009.
(17) Nakamichi, H.; Okada, T. Angew. Chem., Int. Ed. 2006, 45 (26),
4270–4273.
(30) Gansmu¨ller, A.; Concistre`, M.; McLean, N.; Johannessen, O. G.;
Mar´ın-Montesinos, I.; Bovee-Geurts, P. H. M.; Verdegem, P. J. E.;
Lugtenburg, J.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H.
Biochim. Biophys. Acta, Biomembr. 2009, 1788 (6), 1350–1357.
(31) Schreiber, M.; Sugihara, M.; Okada, T.; Buss, V. Angew. Chem.,
Int. Ed. 2006, 45 (26), 4274–4277.
(32) DeLange, F.; Bovee-Geurts, P. H. M.; VanOostrum, J.; Portier, M. D.;
Verdegem, P. J. E.; Lugtenburg, J.; DeGrip, W. J. Biochemistry 1998,
37, 1411–1420.
(33) Verhoeven, M. A.; Bovee-Geurts, P. H. M.; de Groot, H. J. M.;
Lugtenburg, J.; DeGrip, W. J. J. Mol. Biol. 2006, 363 (1), 98–113.
(34) Sheves, M.; Albeck, A.; Ottolenghi, M.; Bovee-Geurts, P. H. M.;
DeGrip, W. J.; Einterz, C. M.; Lewis, J. W.; Schaechter, L. E.; Kliger,
D. S. J. Am. Chem. Soc. 1986, 108, 6440–6441.
(18) Wang, Q.; Schoenlein, R. W.; Peteanu, L. A.; Mathies, R. A.; Shank,
C. V. Science 1994, 266 (5184), 422–424.
(19) Kandori, H.; Furutani, Y.; Nishimura, S.; Shichida, Y.; Chosrowjan,
H.; Shibata, Y.; Mataga, N. Chem. Phys. Lett. 2001, 334 (4-6), 271–
276.
(35) Lewis, J. W.; Pinkas, I.; Sheves, M.; Ottolenghi, M.; Kliger, D. S.
J. Am. Chem. Soc. 1995, 117 (3), 918–923.
(20) Bifone, A.; de Groot, H. J. M.; Buda, F. J. Phys. Chem. B 1997, 101
(15), 2954–2958.
(36) Pauling, L. The Nature of the Chemical Bond and the Structure of
Molecules and Crystals: An Introduction to Modern Structural
Chemistry, 3rd (rev) ed.; Cornell University Press: Ithaca, NY, 1960.
(37) Bondi, A. J. Phys. Chem. 1964, 68 (3), 441–451.
(38) Liu, R. S. H.; Denny, M.; Zingoni, J. P.; Mead, D.; Matsumoto, H.;
Asato, A. E. In Biophysical Studies of Retinal Proteins; Ebrey, T. G.,
Frauenfelder, H., Honig, B., Nakanishi, K., Eds.; University of Illinois
Press: Champaign, IL, 1987; pp 59-63.
(21) Creemers, A. F. L.; Kiihne, S. R.; Bovee-Geurts, P. H. M.; DeGrip,
W. J.; Lugtenburg, J.; de Groot, H. J. M. Proc. Natl. Acad. Sci. U.S.A.
2002, 99 (14), 9101–9106.
(22) Yan, E. C. Y.; Ganim, Z.; Kazmi, M. A.; Chang, B. S. W.; Sakmar,
T. P.; Mathies, R. A. Biochemistry 2004, 43 (34), 10867–10876.
(23) Gasco´n, J. A.; Sproviero, E. M.; Batista, V. S. Acc. Chem. Res. 2006,
39 (3), 184–193.
(39) Karnaukhova, E. N.; Hu, S. H.; Boonyasai, R.; Tan, Q.; Nakanishi,
K. Bioorg. Chem. 1999, 27, 372–382.
(24) Crozier, P. S.; Stevens, M. J.; Woolf, T. B. Proteins: Struct., Funct.,
Bioinf. 2007, 66 (3), 559–574.
(40) Vogel, R.; Siebert, F.; Yan, E. C. Y.; Sakmar, T. P.; Hirshfeld, A.;
Sheves, M. J. Am. Chem. Soc. 2006, 128 (32), 10503–10512.
(41) Asato, A. E.; Matsumoto, H.; Denny, M.; Liu, R. S. H. J. Am. Chem.
Soc. 1978, 100 (18), 5957–5960.
(25) Frutos, L. M.; Andrunio´w, T.; Santoro, F.; Ferre´, N.; Olivucci, M.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (19), 7764–7769.
(26) Weingart, O. J. Am. Chem. Soc. 2007, 129 (35), 10618–10619.
(27) Coto, P. B.; Strambi, A.; Olivucci, M. Chem. Phys. 2008, 347 (1-
3), 483–491.
(42) Liu, R. S. H.; Matsumoto, H.; Asato, A. E.; Denny, M.; Shichida,
Y.; Yoshizawa, T.; Dahlquist, F. W. J. Am. Chem. Soc. 1981, 103,
7195–7201.
(28) Tomasello, G.; Olaso-Gonza´lez, G.; Altoe`, P.; Stenta, M.; Serrano-
Andre´s, L.; Mercha´n, M.; Orlandi, G.; Bottoni, A.; Garavelli, M.
J. Am. Chem. Soc. 2009, 131 (14), 5172–5186.
(43) Shichida, Y.; Ono, T.; Yoshizawa, T.; Matsumoto, H.; Asato, A. E.;
Zingoni, J. P.; Liu, R. S. H. Biochemistry 1987, 26 (14), 4422–4428.
(44) Steinberg, G.; Ottolenghi, M.; Sheves, M. Biophys. J. 1993, 64, 1499–
1502.
(29) Hayashi, S.; Taikhorshid, E.; Schulten, K. Biophys. J. 2009, 96 (2),
403–416.
9
17934 J. AM. CHEM. SOC. VOL. 131, NO. 49, 2009