G.Righi, S.Ciambrone / Tetrahedron Letters 45 (2004) 2103–2106
2105
9H), 0.9 (t, J 6.9 Hz, 3H). 13C NMR (50.3 MHz, CDCl3): d
215.4, 160.5, 81.1, 67.6, 45.6, 41.8, 40.9, 32.6, 28.3, 28.0,
26.2, 20.4, 13.7. Compound 4: 1H NMR (200 MHz,
CDCl3): d 4.01–3.92 (m, 1H), 3.38 (br d, J 3.7 Hz, 1H),
2.86 (dd, J 17.0, 7.2 Hz, 1H), 2.69 (dd, J 17.0, 5.3 Hz, 1H),
2.62 (q, J 6.9 Hz, 1H), 2.5–2.42 (m, 1H), 2.29 (dd, J 6,
3.3 Hz, 1H), 1.46 (s, 9H), 1.60–1.20 (m, 4H), 1.1 (d, J
6.9 Hz, 6H), 0.9 (t, J 7.1 Hz, 3H). 13C NMR (50.3 MHz,
CDCl3): d 213.1, 161.4, 81.6, 67.5, 47.1, 44.8, 41.5, 41.3,
Acknowledgements
The authors thank MIUR (Ministryof Universityand
Research––Rome) for partial financial support (Project
FIRB RBNE017F8N).
1
32.8, 27.9, 20.2, 18.3, 17.8, 13.7. Compound 5: H NMR
References and notes
(200 MHz, CDCl3): d 3.87 (ddd, J 12.4, 6.6, 2.9 Hz, 1H),
3.78 (br d, J 2.9 Hz, 1H), 2.95 (dd, J 17.6, 7.3 Hz, 1H), 2.67
(dd, J 17.6, 5.9 Hz, 1H), 2.37–2.25 (m, 2H), 1.98–1.84 (m,
1H), 1.80–1.00 (m, 10H), 1.46 (s, 9H), 1.15 (s, 9H); 13C
NMR (50.3 MHz, CDCl3): d 212.4, 161.7, 81.6, 68.5, 46.5,
46.2, 44.2, 41.3, 39.5, 30.5, 30.0, 28.3, 27.9, 26.2, 26.0, 25.6.
1. Reviews: (a) Davis, F. A.; McCoull, W. Synthesis 2000,
1347–1365; (b) Atkinson, R. S. Tetrahedron 1999, 55,
1519–1561; (c) Zwanenburg, B. Pure Appl.Chem. 1999, 71,
423–430; (d) Tanner, D. Angew.Chem,. Int.Ed.Engl.
1994, 33, 599–619.
2. (a) Lee, K. D.; Suh, J. M.; Park, J. H.; Ha, H. J.; Cha, H.
G.; Park, G. S.; Chang, J. W.; Lee, W. K.; Dong, Y.; Yun,
H. Tetrahedron 2001, 57, 8267–8276; (b) Righi, G.;
Chionne, A.; DꢁAchille, R.; Bonini, C. Tetrahedron:
Asymmetry 1997, 8, 903–907; (c) Tanner, D.; Gautun, O.
R. Tetrahedron 1995, 51, 8279–8287; (d) Tanner, D.;
Somfai, P. Bioorg.Med.Chem.Lett. 1993, 3, 2415–2417.
3. Righi, G.; Bonini, C. Functionalized Epoxides and Azir-
idines: Reactivitywith Metal Halides and Snythetic
Applications. In Targets in Heterocyclic Systems; Atta-
nasi, O. A., Spinelli, D., Eds.; Italian Societyof Chemistry,
2000; p 139–165.
4. (a) Hwang, G.-I.; Chung, J.-H.; Lee, W. K. J.Org.Chem.
1996, 61, 6183–6188; (b) Andres, J. M.; de Elena, N.;
Pedrosa, R.; Prez-Encabo, A. Tetrahedron 1999, 55,
14137–14144.
5. Righi, G.; Pietrantonio, S.; Bonini, C. Tetrahedron 2001,
57, 10039–10046.
6. (a) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986,
27, 5939–5942; (b) Chen, K.; Gunderson, K. G.; Hardt-
mann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Chem.
Lett. 1987, 1923–1926.
7. Righi, G.; Spirito, F.; Bonini, C. Tetrahedron Lett. 2002,
43, 4737–4740.
8. General procedure for the aldol condensation: Di-n-
butylboryl triflate (1 M in CH2Cl2, 2.6 mmol) was added
dropwise to a stirred solution of the ketone (2 mmol) in
4 mL of CH2Cl2 at 0 °C. After 10 min, diisopropylethyl-
amine (4 mmol in 1 mL of CH2Cl2) was added dropwise.
The reaction mixture was stirred at 0 °C for 30 min and
then cooled to )78 °C. To the above enolate solution was
added a solution of aziridine aldehyde (1 mmol) in 2 mL of
CH2Cl2. After a few minutes the reaction was allowed to
warm to room temperature and was then quenched with a
mixture of MeOH (6 mL), aqueous phosphate buffer
(4 mL, pH ¼ 7) and H2O2 (4 mL of a 30% solution). The
aqueous layer was extracted with two portions of AcOEt
and the combined organic extracts dried (Na2SO4) and
concentrated. GenerallyTLC monitoring revealed about
20% of unreacted aldehyde also after a longer reaction
time. The residue was purified on silica gel (petroleum
ether/EtOAC 9:1).
1
Compound 6: H NMR (200 MHz, CDCl3): d 3.84 (q, J
7.3 Hz, 1H), 3.76 (br s, 1H), 2.88 (dd, J 16.8, 6.6 Hz, 1H),
2.70–2.54 (m, 2H), 2.33 (dd, J 7.3, 2.9 Hz, 1H), 2.27–2.21
(m, 1H), 1.98–1.85 (m, 1H), 1.81–1.6 (m, 4H), 1.72–0.84
(m, 6H), 1.46 (s, 9H), 1.1 (d, J 7.3 Hz, 6H). 13C NMR
(50.3 MHz, CDCl3): d 212.5, 161.8, 81.8, 68.8, 46.5, 46.4,
44.8, 41.5, 39.5, 30.5, 29.9, 27.8, 26.0, 25.6, 25.4, 18.0,
17.9.
9. Trost, B. M.; Fleming, I. In Comprehensive Organic
Synthesis; Pergamon: Oxford, 1991; Vol. 1, p 49.
10. Righi, G.; Franchini, T.; Bonini, C. Tetrahedron Lett.
1998, 39, 2385–2388.
11. General procedure for the opening of the aldol with
MgBr2: To a solution of the aldol (1 mmol) in dryEt O
2
(10 mL) was added MgBr2ÆEt2O (516.5 mg, 2 mmol). The
solution was stirred at room temperature for 6 h (TLC
monitoring), then filtered trough a Celite pad and the
solvent evaporated in vacuo. The residue was chromato-
graphed on silica gel (petroleum ether/EtOAc).
NMR data for representative compounds. Compound 7:
1H NMR (200 MHz, CDCl3): d 5.12 (br d, J 9.3 Hz, 1H),
4.31 (ddd, J 8, 5.6, 1.1 Hz, 1H), 4.14–4.03 (m, 1H), 3.64
(ddd, J 9, 8.2, 0.8 Hz, 1H), 2.81–2.53 (m, 3H), 1.91–1.55
(m, 3H), 1.45 (s, 9H), 1.32–1.15 (2H, m), 1.15 (d, J 6.9 Hz,
6H), 0.88 (3H, t, J 7.1 Hz). 13C NMR (50.3 MHz, CDCl3):
d 216.1, 155.4, 79.7, 68.4, 58.7, 57.6, 43.5, 41.5, 37.2, 28.3,
1
20.8, 17.9, 17.7, 13.4. Compound 8: H NMR (200 MHz,
CDCl3): d 4.96 (br d, J 10.3 Hz, 1H), 4.76 (dd, J 8.7, 3.2 Hz,
1H), 4.15–4.05 (m, 1H), 3.87–3.73 (dt, J 10.3, 0.7 Hz, 1H),
3.5 (br s, 1H), 2.6–2.54 (m, 3H), 1.90–0.83 (m, 11H), 1.46
(s, 9H), 1.12 (d, J 1.1 Hz, 3H), 1.09 (d, J 1.1 Hz, 3H). 13C
NMR (200 MHz, CDCl3): d 216.2, 155.3, 79.8, 67.2, 63.3,
55.7, 43.7, 41.5, 39.6, 32.3, 28.3, 27.4, 26.4, 26.2, 25.9, 17.9.
12. ꢀSpin–spin decouplingꢁ data for compound 8:
dirr
CHOH 4.78
d (ddd, J 8.7;
3.2; 0.6)
CHBr 4.12
d (dd, J 10.4;
1.6)
CHNH 3.83
d (ddd, J 10.4;
10.3; 0.6)
2.64 (CH2CO)
4.96 (NH)
d, J 0.6
dd, J 10.4; 0.6
1.8 (CH2CHCH2)
d, J 10.4
NMR data for representative compounds. Compound 3:
1H NMR (200 MHz, CDCl3): d 3.98 (q, J 6.1 Hz, 1H), 3.41
(br s, 1H), 2.92 (dd, J 17.6, 7.3 Hz, 1H), 2.74 (dd, J 17.6,
5.1 Hz, 1H), 2.53–2.44 (m, 1H), 2.3 (dd, J 5.9, 3.7 Hz, 1H),
1.8–1.5 (m, 4H), 1.47 (s, 9H), 1.15 (s, 9H), 0.9 (t, J 6.9 Hz,
3H). 13C NMR (50.3 MHz, CDCl3): d 216.7, 161.3, 81.5,
67.5, 47.1, 41.4, 41.3, 32.9, 28.3, 27.9, 26.1, 20.2, 13.7.
Compound 30: 1H NMR (200 MHz, CDCl3): d 3.62 (m,
1H), 3.19 (br d, J 3.6 Hz, 1H), 2.88 (dd, J 17.6, 2.2 Hz,
1H), 2.79 (t, J 10.2 Hz, 1H), 2.53–2.44 (m, 1H), 2.26 (dd, J
5.9, 3.7 Hz, 1 H), 1.8–1.5 (m, 4H), 1.47 (s, 9H), 1.15 (s,
.
13. The direct reductive opening of the aziridine ring by
catalytic hydrogenation resulted in different products.
14. Chatgilialoglu, C. Acc.Chem.Res. 1992, 25, 188–204.
15. General procedure for the radical reduction of the bromo
derivatives: To a solution of the bromo derivative (1 mmol)
in benzene (10 mL) tris(trimethylsilyl)silane (0.31 mL,
1 mmol) and a catalytic amount of AIBN were added.
The solution was refluxed for ꢀ5 h (TLC monitoring),
then evaporated in vacuo. The crude mixture was purified
byflash chromatography(petroleum ether/EtOAc, 9:1).