O. Schulze et al. / Carbohydrate Research 340 (2005) 587–595
593
vent was evaporated. Chromatographic workup (50 g
silica gel, EtOAc) and distillation yielded 7 (0.05 g,
J5-endo,5-exo 8.2 Hz; 13C NMR (101 MHz): d 52.3
(PhCH2), 55.8 (OCH3), 63.1 (C-3), 72.0 (C-5), 75.6
(C-2), 77.8 (C-4), 106.6 (C-1), 127.0 (CHAr), 128.1
(2CHAr), 128.4 (2CHAr), 140.0 (C-1Ar); EIMS: m/z (%)
235 (1) [M+ꢀ], 204 (2) [M+ꢀꢁOCH3], 174 (36), 144 (5)
[M+ꢀꢁC7H7], 118 (5), 105 (4), 92 (16), 91 (100, C7H7+),
97 (20), 69 (13), 65 (22), 51 (6), 45 (12), 43 (12), 41 (9),
39 (10); HRMS Calcd for C13H17NO3: 235.1185. Found:
235.1208. Anal. Calcd for C13H17NO3: C, 66.36; H,
7.28; N, 5.95. Found: C, 65.17; H, 7.34; N, 5.85.
0.34 mmol, 45% total yield for this and the previous
20
D
step) as a colourless oil: bp 64 °C (0.5 mm); ½a +92.8
(c 1.0, CHCl3); Rf 0.46 (EtOAc); IR: m 3441 (OH) cmꢁ1
;
1H NMR (500 MHz): d 2.91 (s, 1H, OH), 3.54 (s, 3H,
OCH3), 4.22 (d, 1H, H-2), 4.24 (dd, 1H, H-5endo), 4.70
(dd, 1H, H-5exo), 4.90 (ddd, 1H, H-4), 5.03 (d, 1H, H-
3), 5.34 (d, 1H, H-1). J1,2 3.8, J3,4 4.3, J4,5-endo 2.4,
J4,5-exo 4.5, J5-endo,5-exo 7.9 Hz; 13C NMR (101 MHz): d
56.9 (OCH3), 75.7 (C-2), 75.8 (C-4), 77.2 (C-5), 89.9
(C-3), 105.8 (C-3); EIMS: m/z (%) 129 (1), 117 (6), 116
(21) [M+ꢀꢁCH2O], 115 (10) [M+ꢀꢁOCH3], 101 (7), 88
(6), 87 (100), 86 (10), 85 (20), 84 (8), 83 (2), 75 (10), 74
(16), 73 (7), 72 (5), 71 (32), 69 (24), 68 (15), 61 (56), 60
(10), 59 (28), 58 (17), 57 (56), 56 (24), 55 (46), 54 (8),
45 (22). Anal. Calcd for C6H10O4: C, 49.31; H, 6.90.
Found: C, 48.88; H 7.06.
3.7. Methyl 2,5-anhydro-3-azido-3-deoxy-a-D-arabino-
furanoside (13)
Compound 1210 {0.47 g, 2.48 mmol; IR: m 3399 (OH),
1
2107 (N3) cmꢁ1; H NMR (400 MHz, D2O): d 3.25 (s,
3H, OCH3), 3.59 (dd, 1H, H-5), 3.66 (dd, 1H, H-50),
3.68 (dd, 1H, H-3), 3.89 (ddd, 1H, H-4), 4.03 (dd, 1H,
H-2), 4.80 (d, 1H, H-1). J1,2 1.5, J2,3 3.6, J3,4 6.5, J4,5
3.6. Methyl 2,5-anhydro-3-benzylamino-3-deoxy-a-D-
arabinofuranoside
5.2, J4,5 3.8, J5,5 12.3 Hz; 13C NMR (101 MHz, D2O):
d 55.4 (OCH3), 61.5 (C-5), 66.6 (C-3), 80.0 (C-2),
82.2 (C-4), 108.6 (C-1); EIMS: m/z (%) 158 (17)
[M+ꢀꢁOCH3], 151 (4), 115 (9), 87 (50), 74 (100), 69
(43); CIMS: m/z (%) 207 (100) [M++NH4], 175
(63), 164 (31), 162 (84)}, triphenylphosphine (1.29 g,
4.92 mmol) and diisopropyl azodicarboxylate (0.95
mL, 4.86 mmol) were refluxed (3 h) in dry pyridine
(14 mL). The solvent was evaporated, and the residue
was chromatographed twice (100 g silica gel each; (1)
1:1 EtOAc–hexane; (2) 1:2 EtOAc–pentane, Rf 0.35) to
yield 13 (0.28 g, 1.63 mmol, 66%) as a pale yellow oil.
Traces of diisopropyl hydrazodicarboxylate could not
be completely removed. Thus no correct elemental anal-
0
0
3.6.1. Methyl 3-benzylamino-3-deoxy-a-D-arabinofurano-
side (9). A solution of 83 (1.57 g, 10.74 mmol) in benz-
ylamine (10 mL) was stirred at 150 °C for 5 h. After
vacuum evaporation of the solvent (0.8 mm), the residue
was chromatographed (silica gel, 370 g, 3:1 EtOAc–
EtOH) to yield 9 (2.15 g, 8.49 mmol, 79%) as a pale-yel-
low syrup that was used for the Mitsunobu reaction
without further purification. Rf 0.56 (3:1 EtOAc–EtOH);
1H NMR (500 MHz): d 3.03 (d, 1H, H-3), 3.31 (s, 3H,
OCH3), 3.59 (dd, 1H, H-5), 3.74 (dd, 1H, H-50), 3.75
(d, 1H, PhCH), 3.85 (d, 1H, PhCH), 4.04 (ddd, 1H,
H-4), 4.06 (s, 1H, H-2), 4.83 (s, 1H, H-1), 7.22–7.33
1
ysis was obtained. H NMR (500 MHz): d 3.48 (s, 3H,
0
0
(m, 5H, ArH). J3,4 3.4, J4,5 2.7, J4,5 1.9, J5,5 11.7,
2JCH2 12.9 Hz; 13C NMR (126 MHz): d 52.0 (PhCH2),
54.7 (OCH3), 62.2 (C-5), 65.9 (C-3), 76.7 (C-2), 85.2
(C-4), 109.7 (C-1), 127.2 (CHAr), 128.2 (2CHAr), 128.5
(2CHAr), 139.3 (C-1Ar).
OCH3), 3.73 (d, 1H, H-5endo), 3.83 (d, 1H, H-3), 3.86
(dd, 1H, H-5exo), 4.26 (d, 1H, H-2), 4.60 (d, 1H, H-4),
4.92 (s, 1H, H-1). J2,3 2.3, J4,5-exo 1.2, J5-endo,5-exo
8.4 Hz; 13C NMR (101 MHz): d 56.8 (OMe), 62.1 (C-
3), 72.5 (C-5), 77.7 (C-2 or C-4), 77.8 (C-2 or C-4),
106.4 (C-1).
3.6.2. Methyl 2,5-anhydro-3-benzylamino-3-deoxy-a-D-
arabinofuranoside (11).
A
solution of
9
(0.80 g,
3.8. Methyl 3-azido-3-deoxy-a-L-arabinofuranoside (15)
3.16 mmol) in dry toluene (5 mL) was added to a solu-
tion of triphenylphosphine (0.85 g, 3.24 mmol) and
diisopropyl azodicarboxylate (0.6 mL, 3.07 mmol) in
dry toluene (35 mL) at 0 °C. After 2 h the reaction was
finished (TLC monitoring). The solvent was evaporated.
The residue was purified by column chromatography
A solution of 143 (0.93 g, 6.36 mmol), NaN3 (0.84 g,
12.9 mmol) and NH4Cl (0.82 g, 15.3 mmol) in EtOH
(19 mL) and water (4.5 mL) was refluxed for 76 h. After
evaporation of the solvent the residue was co-distilled
four times with toluene (20 mL each) and twice with
CHCl3 (20 mL each). Chromatography (50 g silica gel,
(100 g silica gel, 3:1 EtOAc–EtOH) to yield 11 (0.64 g,
20
D
2.72 mmol, 86%) as a yellow oil: ½a +83.9 (c 1.0,
EtOAc, Rf 0.64) yielded 15 (1.16 g, 6.13 mmol, 96%) as
20
D
CHCl3); Rf 0.63 (3:1 EtOAc–EtOH); IR: m 3345
a colourless syrup: ½a ꢁ165.5 (c 1.04, CHCl3); IR: m
1
(NH) cmꢁ1 ; H NMR (400 MHz): d 2.70 (s, 1H, NH),
3408 (OH), 2108 (N3) cmꢁ1
;
1H NMR (400 MHz,
3.24 (d, 1H, H-3), 3.39 (s, 3H, OCH3), 3.60 (d, 1H, H-
D2O): d 3.46 (s, 3H, OCH3), 3.79 (dd, 1H, H-5), 3.87
(dd, 1H, H-50), 3.89 (dd, 1H, H-3), 4.10 (ddd, 1H, H-
4), 4.23 (dd, 1H, H-2), 5.01 (d, 1H, H-1). J1,2 1.6, J2,3
5endo), 3.71 (dd, 1H, H-5exo), 3.79 (s, 2H, PhCH2),
4.16 (d, 1H, H-2), 4.39 (d, 1H, H-4), 4.79 (s, 1H,
H-1), 7.20–7.35 (m, 5H, ArH). J2,3 2.1, J4,5-exo 1.0,
3.7, J3,4 6.4, J4,5 5.2, J4,5 3.9, J5,5 12.3 Hz; 13C NMR
0
0