W. Li et al. / Tetrahedron 64 (2008) 7871–7876
7875
reflux for 4 h. After completion of the reaction, the solvent was
4.9. Ecopladib (1)
removed by evaporation under reduced pressure. The residue was
dissolved in 200 mL of DMF, and the resulting solution was poured
into water. The resulting suspension was filtered. The yellow filter
cake was washed with water and dried (187 g, crude). Re-
crystallization of the crude product from EtOAc yielded the desired
product with 94% purity, which was further purified by column
chromatography (eluting with 1–10% DCM/hexane) to afford pure
product (75.05 g, 61% for the last four steps) as a pale yellow solid.
To a solution of the methyl ester 13 (7.62 g,10 mmol) in inhibitor
free THF (150 mL) were added 2 N aq NaOH (15.0 mL, 30.0 mmol)
and MeOH (100 mL). The mixture was heated at 55 ꢀC until the
ester starting material was consumed. THF was removed and the
aqueous residue was acidified to pH 1 using 2 N HCl. The desired
product 1 precipitated as a white solid and was collected via fil-
tration (7.10 g, 95%). Mp 124–125 ꢀC. 1H NMR (400 MHz, DMSO-d6):
Mp 74–75 ꢀC. 1H NMR (400 MHz, CDCl3):
d
3.37 (t, J¼6.1 Hz, 2H),
d
2.97–3.06 (m, 2H), 3.06–3.14 (m, 2H), 3.17 (t, J¼6.7 Hz, 2H), 4.22 (t,
3.87 (m, 3H), 4.33 (t, J¼6.1 Hz, 2H), 6.82 (m, 3H), 7.06 (m, 6H), 7.34
(m, 6H), 7.57 (d, J¼13.6 Hz, 1H), 7.66 (d, J¼2.0 Hz, 1H), 7.95 (m, 2H),
J¼6.7 Hz, 2H), 4.35 (s, 2H), 6.46 (d, J¼8.8 Hz, 1H), 6.80 (dd, J¼8.8,
2.0 Hz, 1H), 6.91–7.00 (m, 2H), 7.04–7.14 (m, 5H), 7.26 (dd, J¼8.3,
2.0 Hz, 1H), 7.33–7.40 (m, 6H), 7.50 (t, 1H), 7.53 (d, J¼8.3 Hz, 1H),
8.02 (d, J¼13.4 Hz,1H). 13C NMR (101 MHz, CDCl3):
d 25.5, 51.9, 63.8,
67.6, 113.6, 114.0, 118.8, 119.3, 123.0, 125.6, 126.6, 127.5, 128.0, 128.5,
129.0, 129.0, 130.3, 131.7, 137.1, 137.6, 138.0, 162.1, 166.7. HRMS (ES-
MS) [(MþH)þ]: for C33H27ClN2O5 567.1681. Found 567.1680.
7.56 (d, J¼2.0 Hz, 1H), 7.67 (d, J¼2.3 Hz, 1H), 7.79–7.89 (m, 2H). 13
C
NMR (101 MHz, DMSO-d6):
d 23.8, 26.0, 42.6, 55.4, 61.4, 67.7, 109.1,
109.1, 113.1, 113.9, 122.6, 123.4, 127.6, 128.5, 129.2, 130.1, 130.6, 130.7,
130.7, 131.1, 131.2, 132.3, 134.1, 137.3, 138.8, 161.9, 166.7. HRMS (ES-
MS) [(MþH)þ]: for C39H33Cl3N2O5S 747.1249. Found 747.1241. Anal.
Calcd for C39H33Cl3N2O5S: C, 62.61; H, 4.45; N, 3.74. Found: C,
62.34; H, 4.28; N, 3.60.
4.7. Methyl 4-(2-(2-(2-aminoethyl)-1-benzhydryl-5-chloro-
1H-indol-3-yl)ethoxy)benzoate (13)
A three-necked 5 L r.b. flask containing a solution of the nitro
olefin 12 (35.0 g, 61.7 mmol) in THF (1450 mL) was charged with
concentrated HCl (175 mL) and the freshly prepared Zn(Hg) amal-
gam11 (186 g, 2.7 mol). Hydrogen release occurred immediately.
The reaction temperature rose from 20 to 52 ꢀC. Color of the re-
action mixture turned from yellow to pale green once the reaction
was complete (1–3 h, monitored by TLC). The reaction mixture was
poured into a mixture containing EtOAc (1.45 L) and concentrated
NH4OH (0.3 L) with efficient agitation for 20 min. The organic layer
was separated, washed with aq NH4OH (200 mL), satd NaHCO3
(500 mL), water (2000 mLꢁ4), and brine (500 mL), and dried over
MgSO4. Evaporation of the solvent afforded 34.5 g of crude product.
Purification by flash column chromatography (eluting with 0–5%
MeOH/DCM) afforded the pure product (24.03 g, 72%) as a pale
Acknowledgements
The authors thank Wyeth colleagues Katherine Lee, John
McKew, Steve Tam, and Andre Asselin for discussions on chemistry,
Charlie Wu for investigating the O-alkylation reactions, and Nelson
Huang, Walter Massefski, and Ning Pan for analytical support,
Nathan Fuller and Paul Morgan for assistance.
Supplementary data
Supplementary data associated with this article can be found in
References and notes
yellow solid. Mp 121–122 ꢀC. 1H NMR (300 MHz, CDCl3):
d 2.81 (t,
J¼7.3 Hz, 2H), 2.98 (t, J¼7.4 Hz, 2H), 3.25 (t, J¼7.1 Hz, 2H), 3.88 (s,
3H), 4.22 (t, J¼7.0 Hz, 2H), 6.51 (d, J¼9.1 Hz, 1H), 6.8 (dd, J¼8.9,
2.1 Hz, 1H), 6.9 (d, J¼9.1 Hz, 2H), 6.9 (s, 1H), 7.03–7.18 (m, 4H), 7.28–
7.38 (m, 6H), 7.54 (d, J¼1.9 Hz, 1H), 7.96 (d, J¼9.1 Hz, 2H). 13C NMR
1. Clark, J. D.; Tam, S. Expert Opin. Ther. Pat. 2004, 14, 937.
2. (a) Lee, K. L.; Foley, M. A.; Chen, L.; Behnke, M. L.; Lovering, F. E.; Kirincich, S. J.;
Wang, W.; Shim, J.; Tam, S.; Shen, M. W. H.; Khor, S. P.; Xu, X.; Goodwin, D. G.;
Kamarao, M. K.; Nickerson-Nutter, C.; Donahue, F.; Ku, M. S.; Clark, J. D.;
McKew, J. C. J. Med. Chem. 2007, 50, 1380; (b) McKew, J. C.; Foley, M. A.; Thakker,
P.; Behnke, M. L.; Lovering, F. E.; Sum, F.-W.; Tam, S.; Wu, K.; Shen, M. W. H.;
Zhang, W.; Gonzalez, M.; Liu, S.; Mahadevan, A.; Sard, H.; Khor, S. P.; Clark, J. D.
J. Med. Chem. 2006, 49, 135.
(101 MHz, CDCl3):
d 24.9, 29.6, 42.3, 51.9, 62.5, 68.1, 109.2, 113.6,
114.1, 117.6, 121.3, 122.6, 125.1, 127.9, 128.1, 128.7, 129.5, 131.6, 134.8,
137.8, 139.0, 162.6, 166.9. HRMS (ES-MS) [(MþH)þ]: for
3. (a) Lehr, M.; Klimt, M.; Elfringhoff, A. S. Bioorg. Med. Chem. Lett. 2001, 11, 2569;
(b) Ludwig, J.; Bovens, S.; Brauch, C.; Elfringhoff, A. S.; Lehr, M. J. Med. Chem.
2006, 49, 2611.
C
33H31ClN2O3 539.2096. Found 539.2096.
4. (a) Mahadevan, A.; Sard, H.; Gonzalez, M.; McKew, J. C. Tetrahedron Lett. 2003,
44, 4589; (b) Appleton, J. E.; Dack, K. N.; Green, A. D.; Steele, J. Tetrahedron Lett.
1993, 34, 1529.
5. (a) Kursanov, D. N.; Parnes, Z. N.; Bassova, G. I.; Loim, N. M.; Zdanovich, V. I.
Tetrahedron 1967, 2235; (b) Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis
1974, 633.
4.8. Methyl 4-(2-(1-benzhydryl-5-chloro-2-(2-((3,4-
dichlorophenyl)methylsulfonamido)ethyl)-1H-indol-3-
yl)ethoxy)benzoate (14)
6. Selected recent references: (a) Duval, R. A.; Allmon, R. L.; Lever, J. R. J. Med.
Chem. 2007, 50, 2144; (b) Douelle, F.; Capes, A. S.; Greaney, M. F. Org. Lett. 2007,
9, 1931.
7. Smith, B. M.; March, J. Advanced Organic Chemistry, 5th ed.; John Wiley and
Sons: New York, NY, USA, 2001; p 466.
8. Cossy, J.; Lutz, F.; Alauuze, V.; Meyer, C. Synlett 2002, 45.
9. Zhou, H.; Liao, X.; Yin, W.; Ma, Y. J.; Cook, J. M. J. Org. Chem. 2006, 71, 251.
10. There are many reports on the formation of bis(indol-3-yl)methane derivatives
from indole and aldehyde under acidic conditions. (a) Lee, J. W.; Park, S. Y.; Cho,
B.; Kim, J. S. Tetrahedron Lett. 2007, 48, 2541; (b) Hagiwara, H.; Sekifuji, M.;
Hoshi, T.; Qiao, K.; Yokoyama, C. Synlett 2007, 1320.
To a solution of the amine 13 from the previous step (5.39 g,
10 mmol) in CH2Cl2 (100 mL) were added (3,4-dichloro-
phenyl)methanesulfonyl chloride (3.1 g, 12 mmol) and triethyl-
amine (2.024 g, 20 mmol). The resulting suspension was stirred
until the amine was consumed. The mixture was washed with H2O
(80 mLꢁ2) and brine (50 mLꢁ2), dried, and concentrated to afford
the product (7.62 g, 100% yield) as white solid, which was directly
used in the next step. Mp 94–95 ꢀC. 1H NMR (400 MHz, CDCl3):
11. Lanzilotti, A. E.; Littell, R.; Fanshawe, W. J.; McKenzie, T. C.; Lovell, F. M. J. Org.
Chem. 1979, 44, 4809.
d
2.89 (m, 2H), 3.09 (t, 2H), 3.19 (t, J¼6.6 Hz, 2H), 3.86 (s, 3H), 3.92 (s,
12. Li, W.; Li, J.; DeVincentis, D.; Mansour, T. S. Tetrahedron Lett. 2004, 45, 1071. This
is the first large-scale synthetic application of this new reaction.
13. Shamblee, D. A.; Gillespie, J. S., Jr. J. Med. Chem. 1979, 22, 86.
14. For synthetic applications of DMSO not involving oxygen transfer or oxygen
donation, see: (a) Li, W.; Li, J.; Lin, M.; Wacharasindhu, S.; Tabei, K.; Mansour,
T. S. J. Org. Chem. 2007, 72, 6016; (b) Li, W.; Li, J.; Wan, Z.-K.; Wu, J.; Massefski,
W. Org. Lett. 2007, 9, 4607.
2H), 4.22 (t, J¼6.6 Hz, 2H), 4.32 (t, J¼6.2 Hz, 1H), 6.54 (d, J¼9.1 Hz,
1H), 6.82 (m, 3H), 6.90 (s, 1H), 6.98 (dd, J¼8.2, 2.2 Hz, 1H), 7.07 (dd,
J¼6.6, 2.8 Hz, 4H), 7.30 (m, 8H), 7.54 (d, J¼2.1 Hz, 1H), 7.94 (m, 2H).
13C NMR (101 MHz, CDCl3):
d 24.8, 27.5, 43.0, 51.9, 57.6, 60.4, 62.5,
68.0, 110.3, 113.7, 114.1, 117.8, 121.9, 122.7, 125.3, 128.1, 128.9, 129.2,
129.2, 129.7, 130.8, 131.6, 132.3, 132.9, 133.3, 135.1, 135.6, 138.9,
162.5, 166.8.
15. Selected literature: (a) Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87,
5661, 5670; (b) Albright, J. D.; Goldman, L. J. Am. Chem. Soc. 1967, 89, 2416;