Cyclisation of 2-iodo-1-(prop-2-enyloxy)benzene 1
5-H); m/z 198 (Mϩ, 42%), 197 (46), 170 (28), 157 (100), 144 (53),
130 (27) 103 (33), 89 (21), 77 (23) and 39 (38).
A solution of Bu3GeH (0.11 g, 0.44 mmol), 2-iodo-1-(prop-2-
enyloxy)benzene 1 (96.0 mg, 0.37 mmol) and AIBN (35.0 mg,
0.2 mmol) in toluene (38 cm3) was heated under reflux for 2 h.
Purification gave 3-methyl-2,3-dihydrobenzofuran 2 (45.1 mg,
0.34 mmol, 91%) as a colourless oil. δH 1.33 (3 H, d, J 6.9, Me),
3.47–3.62 (1 H, m, CHMe), 4.07 (1 H, dd, J 7.8, 8.8, CHAHBO),
4.68 (1 H, dd, J 8.8, 8.8, CHAHBO), 6.77–6.89 (2 H, m, Ar
4,6-H) and 7.08–7.17 (2 H, m, Ar 3,5-H); δC 20.01 (Me), 37.16
(CHMe), 79.10 (OCH2), 110.09 (Ar 6-C), 121.05 (Ar 4-C),
124.41 (Ar 5-C), 128.61 (Ar 3-C), 132.87 (Ar 2-C) and 160.29
(Ar 1-C); m/z 134 (84%), 119 (95) and 91 (100). Spectroscopic
data agreed with those in the literature.49 Other reactions of
2-iodo-1-(prop-2-enyloxy)benzene 1 are reported in Table 1.
Acknowledgements
We thank GlaxoSmithKline and Loughborough University for
a Postgraduate Studentship (S. L. K.), GlaxoSmithKline for
generous financial support and the EPSRC Mass Spectrometry
Unit, Swansea University, Wales for mass spectra.
References
1 P. A. Baguley and J. C. Walton, Angew. Chem., Int. Ed., 1998, 37,
3073; A. F. Parsons, Chem. Br., 2002, 42.
2 B. C. Gilbert and A. F. Parsons, J. Chem. Soc., Perkin Trans. 1, 2002,
367.
3 C. Chatgilialoglu, in Radicals in Organic Synthesis, eds. P. Renaud
and M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 1, ch. 1.3, p. 28.
4 D. L. J. Clive and J. Wang, J. Org. Chem., 2002, 67, 1192 and
references cited therein.
5 A. Ganesan, in Radicals in Organic Synthesis, eds. P. Renaud and
M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 2, ch. 1.5, p. 81; E. J.
Enholm and J. P. Schutte, Org. Lett., 1999, 1, 1275; G. Dumartin,
M. Pourcel, B. Delmond, O. Donard and M. Pereyre, Tetrahedron
Lett., 1998, 39, 4663.
Radical cyclisation of 1-iodo-2-[(3-phenylprop-2-enyl)oxy]-
benzene 5a using PRC
1-Iodo-2-[(3-phenylprop-2-enyl)oxy]benzene 5a (100 mg,
0.4 mmol) in anhydrous cyclohexane (35 cm3), Bu3GeH (0.1 g,
0.4 mmol), phenylthiol (4 mg, 0.04 mmol) and ACCN (0.2 g,
0.4 mmol in total) were reacted for 9 h using the general
procedure for radical reactions. Column chromatography of the
resulting mixture using light petroleum and DCM as eluants
gave 3-benzyl-2,3-dihydrobenzofuran 8 (56 mg, 0.27 mmol,
75%) as a colourless oil. δH 2.80 (1 H, dd, J 13.8 and 8.9,
CH2Ph), 3.03 (1 H, dd, J 13.8 and 6.4, CH2Ph), 3.71 (1 H, m,
3-H), 4.24 (1 H, dd, J 8.9, 6.0, 2-H), 4.48 (1 H, dd, J 8.9 and 8.9,
2-H), 6.79 (2 H, m, 5,7-H), 6.94 (1 H, d, J 7.8, 4-H), 7.06–7.32
(6 H, m, Ph and 6-H); δC 29.91 (3-C), 39.99 (2-C), 42.37 (1-C),
108.57 (Ar 6-C), 119.25 (Ar 4-C), 123.51 (Ph 4-C), 125.42 (Ar
5-C), 127.22 (Ar 3-C), 127.32 (Ph 2,6-C), 127.52 (Ph 3,5-C),
129.24 (Ar 2-C), 138.13 (Ph 1-C) and 158.89 (Ar 1-C); m/z 109
(65%), 108 (54), 81 (40), 79 (33), 53 (39) and 41 (100). Spectro-
scopic data agreed with those in the literature.50 Other reactions
of 1-iodo-2-[(3-phenylprop-2-enyl)oxy]benzene 5a and those of
1-bromo-2-[(3-phenylprop-2-enyl)oxy]benzene 5b are reported
in Table 2.
6 D. P. Curran, S. Hadida, S.-Y. Kim and Z. Luo, J. Am. Chem. Soc.,
1999, 121, 6607 and references therein.
7 N. J. Lawrence, M. D. Drew and S. M. Bushell, J. Chem. Soc., Perkin
Trans. 1, 1999, 3381.
8 B. P. Roberts, Chem. Soc. Rev., 1999, 28, 25.
9 A. Studer and S. Amrein, Angew. Chem., Int. Ed., 2000, 39, 3080.
10 S. Mikami, K. Fujita, T. Nakamura, H. Yorimitsu, H. Shinokubo,
S. Matsubara and K. Oshima, Org. Lett., 2001, 3, 1853.
11 K. Inoue, A. Sawada, I. Shibata and A. Baba, J. Am. Chem. Soc.,
2002, 124, 906.
12 S. C. Roy, G. Guin, K. K. Rana and G. Maiti, Tetrahedron, 2002, 58,
2435; H. Yorimitsu, H. Shinokubo and K. Oshima, Bull. Chem. Soc.
Jpn., 2001, 74, 325; C. G. Martin, J. A. Murphy and C. R. Smith,
Tetrahedron Lett., 2000, 41, 1833; S. R. Graham, J. A. Murphy and
A. R. Kennedy, J. Chem. Soc., Perkin Trans. 1, 1999, 3071.
13 G. A. Molander, in Radicals in Organic Synthesis, eds. P. Renaud
and M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 1, ch. 2.1, p. 153.
14 B. B. Snider, in Radicals in Organic Synthesis, eds. P. Renaud and
M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 1, ch. 2.3, p. 198.
15 S. Z. Zard, Angew. Chem., Int. Ed Engl., 1997, 36, 673; S. Z. Zard, in
Radicals in Organic Synthesis, eds. P. Renaud and M. P. Sibi, Wiley-
VCH, Weinheim, 2001, vol. 1, ch. 1.6, p. 90.
Cyclisation of 4-phenyl-1-(4-phenylselanylbutyl)-1H-pyrazole 27
Bu3GeH (43 mg, 0.18 mmol) and Et3B (1.0 M in hexane, 0.28
mmol) were added dropwise to a solution of 4-phenyl-1-(4-
phenylselanylbutyl)-1H-pyrazole 27 (n = 2) (0.05 g, 0.14 mmol)
in anhydrous cyclohexane (25 cm3). The flask was fitted with a
rubber septum and exposed to air via a needle while stirring at
ambient temperature for 8 h. Further Bu3GeH (43 mg, 0.18
mmol) and Et3B (1.0 M in hexane, 0.28 mmol) were added and
the mixture stirred for a further 18 h after which period
Bu3GeH (43 mg, 0.18 mmol) and Et3B (1.0 M in hexane, 0.28
mmol) were again added. The mixture was stirred for a further
8 h. Evaporation to dryness followed by column chromato-
graphy using mixtures of light petroleum and EtOAc as eluant
gave 3-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine 28
(n = 2) (44%), unreacted starting material 27 (n = 2) (7%) and
1-but-3-enyl-4-phenyl-1H-pyrazole 30 (n = 2) (4%). All yields
were initially determined with the use of 1,4-dimethoxybenzene
as the internal standard in 1H NMR spectroscopy. 28 (n = 2):42
(Found: Mϩ, 199.1233. C13H14N2 requires 199.1235); νmax/cmϪ1
1602, 764 and 699; δH 1.84–1.90 (2 H, m, 5-H), 2.04–2.12 (2 H,
m, 6-H), 2.95 (2 H, t, J 6.2, 4-H), 4.20 (2 H, t, J 7.0, 7-H), 7.20–
7.28 (1 H, m, Ph 4-H), 7.34–7.41 (4 H, m, Ph 2,3,5,6-H) and
7.43 (1 H, s, 2-H); δC 20.55 (5-C), 23.12 (6-C), 23.15 (4-C), 48.18
(7-H), 118.49 (3-C), 125.75 (Ph 4-C), 126.76 (Ph 2,6-C), 128.61
(Ph 3,5-C), 133.67 (Ph 1-C), 135.79 (2-C) and 137.25 (9-C); m/z
199 (Mϩ, 100%). 30 (n = 2): 2.61–2.69 (2 H, m, 2-H), 4.21 (2 H,
16 W. B. Motherwell and C. Imboden, in Radicals in Organic Synthesis,
eds. P. Renaud and M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 1,
ch. 1.7, p. 109.
17 J. Byers, in Radicals in Organic Synthesis, eds. P. Renaud and
M. P. Sibi, Wiley-VCH, Weinheim, 2001, vol. 1, ch. 1.5, p. 72.
18 P. Pike, S. Hershberger and J. Hershberger, Tetrahedron Lett., 1985,
26, 6289.
19 D. P. Curran, U. Diedericksen and M. Palovich, J. Am. Chem. Soc.,
1997, 119, 4797; A. L. J. Beckwith and D. H. Roberts, J. Am. Chem.
Soc., 1986, 108, 5893.
20 S. Tsunoi, I. Ryu, S. Yamasaki, H. Fukushima, M. Tanaka,
M. Komatsu and N. Sonoda, J. Am. Chem. Soc., 1996, 118, 10670;
S. Tsunoi, I. Ryu, S. Yamasaki, H. Fukushima, M. Tanaka,
M. Komatsu and N. Sonoda, J. Am. Chem. Soc., 1996, 118, 10670;
K. Nagahara, I. Ryu, M. Komatsu and N. Sonoda, J. Am. Chem.
Soc., 1997, 119, 5465; I. Ryu, Chem. Soc. Rev., 2001, 30, 16.
21 P. J. Craig and J. T. Van Elteren, in The Chemistry of Organic
Germanium, Tin and Lead Compounds, ed. S. Patai, 1995, ch. 16,
p. 843; E. Lukevics and M. Ignatovich in The Chemistry of Organic
Germanium, Tin and Lead Compounds, ed. S. Patai, John Wiley and
Sons, Chichester, 1995, ch. 17, p. 857.
22 C. Chatgilialoglu and M. Ballestri, Organometallics, 1995, 14,
5017.
23 H. Kinoshita, H. Kakiya and K. Oshima, Bull. Chem. Soc. Jpn.,
2000, 73, 2159.
24 T. Nakamura, H. Yorimitsu, H. Shinokubo and K. Oshima, Bull.
Chem. Soc. Jpn., 2001, 74, 747.
25 S. Tanaka, T. Nakamura, H. Yorimitsu,
H Shinokubo and
K. Oshima, Org. Lett., 2000, 2, 1911; T. Nakamura, S. Tanaka,
H. Yorimitsu, H Shinokubo and K. Oshima, C. R. Acad. Sci., Ser.
IIc: Chim., 2001, 4, 461; S. Tanaka, T. Nakamura, H. Yorimitsu and
K. Oshima, Synlett, 2002, 569; S. Tanaka, T. Nakamura,
t, J 7.0, 1-H), 5.06–5.13 (2 H, m, CH᎐CH ), 5.70–5.87 (1 H, m,
᎐
2
CH =CH2), 7.26–7.38 (3 H, m, Ph 3,4,5-H), 7.46–7.49 (2 H, m,
Ph 2,6-H), 7.61 (1 H, s, pyrazole 3-H) and 7.77 (1 H, s, pyrazole
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2, 5 8 5 – 5 9 2
591