Journal of the American Chemical Society
Article
w, 859 w, 841 w, 763 m, 709 w, 622 w, 485 w, 445 w cm−1; 1H NMR
(CD3CN) δ 5.31 (s, 1H), 6.78 (dd, J = 1.3, 5.0 Hz, 1H), 6.83 (dd, J =
1.3, 3.0 Hz, 1H), 7.44 (dd, J = 3.0, 5.0 Hz, 1H).
(4) Moss, R. A.; Turro, N. J. In Kinetics and Spectroscopy of Carbenes
and Biradicals; Platz, M. S., Ed.; Plenum Press: New York, 1990, pp
213−238.
(2-Thienyl)diazomethane (2). Red liquid. UV/vis (CH3CN) λmax
(nm) (ε) (L mol−1 cm−1) 502 (8.13), 297 (8620), 204 (6120); IR (Ar,
10 K) 2071 s, 1597 w, 1523 w, 1449 w, 1381 w, 1306 w, 1077 w, 803
w, 680 w cm−1; 1H NMR (CD3CN) δ 5.54 (s, 1H), 6.86 (dd, J = 1.0,
3.5 Hz, 1H), 6.99 (dd, J = 3.5, 5.0 Hz, 1H), 7.15 (dd, J = 1.0, 5.0 Hz,
1H).
(5) Jones, M., Jr.; Moss, R. A. In Reactive Intermediate Chemistry;
Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley: Hoboken, NJ,
2004, pp 273−328.
(6) Moss, R. A.; Jang, E. G.; Kim, H.-R.; Ho, G.-J.; Baird, M. S.
Tetrahedron Lett. 1992, 33, 1427−1430.
(7) Khasanova, T.; Sheridan, R. S. J. Am. Chem. Soc. 1998, 120, 233−
234.
(8) Khasanova, T.; Sheridan, R. S. Org. Lett. 1999, 1, 1091−1093.
(9) Baird, M. S.; Bruce, I. J. Chem. Res., Synop. 1990, 134−135.
(10) Moss, R. A.; Fu, X.; Ma, Y.; Sauers, R. R. Tetrahedron Lett. 2003,
44, 773−776.
(11) Khasanova, T.; Sheridan, R. S. J. Am. Chem. Soc. 2000, 122,
8585−8586.
(12) Nikitina, A.; Sheridan, R. S. J. Am. Chem. Soc. 2002, 124, 7670−
7671.
(13) Nikitina, A. F.; Sheridan, R. S. Org. Lett. 2005, 7, 4467−4470.
(14) Wang, J.; Sheridan, R. S. Org. Lett. 2007, 9, 3177−3180.
(15) Kaiser, R. I. Chem. Rev. 2002, 102, 1309−1358.
(16) Albers, R.; Sander, W. J. Org. Chem. 1997, 62, 761−764.
(17) Albers, R.; Sander, W. Liebigs Ann./Recl. 1997, 897−900.
(18) Osaka, I.; McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202−
1214.
(3-Furyl)diazomethane (3). Orange-red liquid. UV/vis (CH3CN)
λmax (nm) (ε) (L mol−1 cm−1) 491 (8.51), 251 (8050), 211 (5260); IR
(Ar, 10 K) 2066 s, 1594 w, 1509 w, 1416 w, 1368 w, 1170 w, 1065 w,
1
1028 w, 874 w, 763 w, 589 w cm−1; H NMR (CD3CN) δ 5.03 (s,
1H), 6.29 (s, 1H), 7.34 (m, 1H), 7.49 (m, 1Hvery small coupling).
(The NMR sample was spiked with a known quantity of benzene to
enable the determination of the solution concentration of diazo
1
compound. The H NMR resonance of benzene interferes with the
7.34-ppm resonance of diazo compound 3, precluding an accurate
determination of chemical shift/integration/coupling constant.)
(2-Furyl)diazomethane (4). Orange-red liquid. UV/vis (CH3CN)
λmax (nm) (ε) (L mol−1 cm−1) 496 (16.3), 278 (10800); IR (Ar, 10 K)
2076 s, 1593 w, 1516 w, 1428 w, 1007 w, 927 w, 884 w, 767 w, 713 w,
1
657 w, 593 w cm−1; H NMR (CD3CN) δ 5.36 (s, 1H), 6.03 (d, J =
3.3 Hz, 1H), 6.45 (dd, J = 2.0, 3.3 Hz, 1H), 7.42 (dd, J = 0.7, 2.0 Hz,
1H).
(19) Handbook of Thiophene-Based Materials: Applications in Organic
Electronics and Photonics; Perepichka, I. F., Perepichka, D. F., Eds.;
Wiley: Chichester, UK, 2009.
(20) Sun, J.; Zhang, B.; Katz, H. E. Adv. Funct. Mater. 2011, 21, 29−
45.
(21) Hoffman, R. V.; Shechter, H. J. Am. Chem. Soc. 1971, 93, 5940−
5941.
(22) Hoffman, R. V.; Orphanides, G. G.; Shechter, H. J. Am. Chem.
ASSOCIATED CONTENT
■
S
* Supporting Information
Matrix-isolation spectra (IR, UV/vis, EPR) associated with the
photolyses of diazo compounds 1−4; details concerning
XSophe simulation of triplet EPR spectra; computed energies,
harmonic vibrational frequencies, infrared intensities, and
Cartesian coordinates of all computed structures. This material
Soc. 1978, 100, 7927−7933.
(23) Pan, W.; Balci, M.; Shevlin, P. B. J. Am. Chem. Soc. 1997, 119,
5035−5036.
(24) McKee, M. L.; Shevlin, P. B.; Zottola, M. J. Am. Chem. Soc.
2001, 123, 9418−9425.
AUTHOR INFORMATION
■
(25) Nakatani, K.; Adachi, K.; Tanabe, K.; Saito, I. J. Am. Chem. Soc.
1999, 121, 8221−8228.
Corresponding Author
(26) McClintock, S. P.; Shirtcliff, L. D.; Herges, R.; Haley, M. M. J.
Org. Chem. 2008, 73, 8755−8762.
Present Address
#Department of Chemistry, Carroll College, 1601 North
Benton Ave, Helena, MT 59625
(27) Shirtcliff, L. D.; McClintock, S. P.; Haley, M. M. Chem. Soc. Rev.
2008, 37, 343−364.
(28) Young, B. S.; Kohler, F.; Herges, R.; Haley, M. M. J. Org. Chem.
̈
Notes
2011, 76, 8483−8487.
The authors declare no competing financial interest.
(29) Herges, R. Angew. Chem., Int. Ed. 1994, 33, 255−273.
(30) Sun, Y.; Wong, M. W. J. Org. Chem. 1999, 64, 9170−9174.
(31) Birney, D. M. J. Am. Chem. Soc. 2000, 122, 10917−10925.
(32) Seburg, R. A.; McMahon, R. J.; Stanton, J. F.; Gauss, J. J. Am.
Chem. Soc. 1997, 119, 10838−10845.
ACKNOWLEDGMENTS
■
We gratefully acknowledge financial support from the National
Science Foundation (NSF-1011959). We also acknowledge
NSF support for Departmental facilities used in this research:
EPR spectrometer (NSF-9013030), computing facilities (NSF-
0091916 and NSF-0840494), and NMR instrumentation (NSF-
0342998). S.A.R. acknowledges a Way-Klingler sabbatical
fellowship from Marquette University. We thank Prof. Thomas
Brunold (UW-Madison) for assistance with the ORCA
calculations.
(33) Plattner, D. A.; Houk, K. N. J. Am. Chem. Soc. 1995, 117, 4405−
4406.
(34) Woodcock, H. L.; Schaefer, H. F.; Schreiner, P. R. J. Phys. Chem.
A 2002, 106, 11923−11931.
(35) Woodcock, H. L.; Moran, D.; Brooks, B. R.; Schleyer, P. v. R.;
Schaefer, H. F. I. J. Am. Chem. Soc. 2007, 129, 3763−3770.
(36) Perrotta, R. R.; Winter, A. H.; Coldren, W. H.; Falvey, D. E. J.
Am. Chem. Soc. 2011, 133, 15553−15558.
(37) Our ability to observe the IR absorption of triplet 3-
thienylcarbene (13) relied on the use of a nitrogen matrix instead of
an argon matrix. IR experiments carried out in argon failed to reveal
any bands attributable to the carbene, due to the unfortunate overlap
between a strong absorption of 3-thienyldiazomethane (1) (disappear-
ing) and the strongest absorption of triplet 3-thienylcarbene (13)
(appearing). The nitrogen matrix shifts the peaks just enough that the
absorption of carbene 13 can be observed.
REFERENCES
■
(1) Wentrup, C. In Methoden der Organischen Chemie (Houben-Weyl);
Regitz, M., Ed.; G. Thieme: Stuttgart, Germany, 1989; Vol. E19b, pp
824−1021.
(2) Kinetics and Spectroscopy of Carbenes and Biradicals; Platz, M. S.,
Ed.; Plenum: New York, 1990.
(38) The IR bands of the minor species in the matrix are weak
(3) Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones,
M., Jr., Eds.; Wiley: Hoboken, NJ, 2004.
(Figure S1), and hence the comparison with the computed spectrum
6453
dx.doi.org/10.1021/ja300927d | J. Am. Chem. Soc. 2012, 134, 6443−6454