C. Assiego et al. / Tetrahedron Letters 45 (2004) 2611–2613
2613
References and notes
1. Wheatley, J. R.; Nash, R. J.; Watson, A. A.; Griffiths,
R. C.; Butters, T. D.; Muller, M.; Watkin, D. J.; Winkler,
D. A.; Fleet, G. W. J. J. Chem. Soc., Perkin Trans. 1 1999,
2735–2745.
2. Martin, O. R.; Saavedra, O. M.; Xie, F.; Liu, L.; Picasso,
S.; Vogel, P.; Kizu, H.; Asano, N. Bioorg. Med. Chem.
2001, 9, 1269–1278, and references cited therein.
3. Shilvock, J. P.; Fleet, G. W. J. Synlett 1998, 554–556.
4. Ikeda, K.; Takahashi, M.; Nishida, M.; Miyauchi, M.;
Kizu, H.; Kameda, Y.; Arisawa, M.; Watson, A. A.; Nash,
R. J.; Fleet, G. W. J.; Asano, N. Carbohydr. Res. 2000,
323, 73–80.
5. Asano, N.; Kato, A.; Miyauchi, M.; Kizu, H.; Kameda,
Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. J. Nat.
Prod. 1998, 61, 625–628.
6. Martin, O. R.; Compain, P.; Kizu, H.; Asano, N. Bioorg.
Med. Chem. Lett. 1999, 9, 3171–3174.
7. Asano, N.; Nishida, M.; Miyauchi, M.; Ikeda, K.;
Yamamoto, M.; Kizu, H.; Kameda, Y.; Watson, A. A.;
Nash, R. J.; Fleet, G. W. J. Phytochemistry 2000, 53, 379–
382.
8. Pino-Gonzalez, M. S.; Assiego, C.; Lopez-Herrera, F. J.
Tetrahedron Lett. 2003, 44, 8353–8356.
Scheme 5. Reagents and conditions: (a) NaN3, AcOH, DMF; (b)
BnBr, NaH, TBAI, THF, several days; (c) 5% TFA in CH2Cl2; (d)
MsCl, py, 0 °C, 15 h; (e) (i) Ph3P, CH2Cl2, 17 h, (ii) H2O, K2CO3, 48 h.
9. Synthesis of a,b-epoxyamides with sulfur ylides: (a)
ꢀ
Synthesis of 1: Lopez-Herrera, F. J.; Pino-Gonzalez,
M. S.; Sarabia Garcıa, F.; Heras Lopez, A.; Ortega-
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
Alcantara, J. J.; Pedraza-Cebrian, M. G. Tetrahedron:
Asymmetry 1996, 7, 2065–2071, corrected H NMR data
1
In order to synthesise azepane derivatives, the azido
group was stereoselectively introduced in 1 and the
hydroxyls benzylated giving, after 6 days at rt, a mixture
of 6b (31%) and monobenzylated product that could be
isolated and further rebenzylated. Hydrolysis of the
trityl group, mesylation, then reduction of the azido
group afforded the acyclic amine 12 and subsequent
cyclisation gave the azepane 5b. The structural assign-
ments were consistent with the NMR data (Scheme 5).16
ꢀ
in Ref. 8; (b) Lopez-Herrera, F. J.; Heras-Lopez, A. M.;
Pino Gonzalez, S.; Sarabia Garcıa, F. J. Org. Chem. 1996,
ꢀ
ꢀ
ꢀ
ꢀ
61, 8839–8848; (c) Lopez-Herrera, F. J.; Sarabia-Garcıa,
F.; Heras-Lopez, A.; Pino-Gonzalez, M. S. J. Org. Chem.
ꢀ
ꢀ
ꢀ
ꢀ
1998, 63, 9630–9634; (d) Lopez-Herrera, F. J.; Sarabia-
Garcıa, F.; Pedraza-Cebrian, G. M.; Pino-Gonzalez, M. S.
ꢀ
ꢀ
Tetrahedron Lett. 1999, 40, 1379–1380; (e) Valpuesta, M.;
ꢀ
Durante, P.; Lopez-Herrera, F. J. Tetrahedron 1993, 49,
9547–9560; (f) Izquierdo, I.; Plaza, M. T.; Robles, R.;
Mota, A. J. Tetrahedron: Asymmetry 2000, 11, 4509–4519.
10. Martin, O. R.; Liu, L.; Yang, F. Tetrahedron Lett. 1996,
37, 1991–1994.
The present syntheses of 3a, 3b and 5b from the
D-ribo
derivative 1 have demonstrated the utility of a,b-
epoxyamides in the formation of hydroxylated pyrrol-
idines and azepanes.17 To summarise, we have reported
an efficient methodology for the preparation of imino-
sugar derivatives with different ring sizes, combining
functional group transformations and regioselective
epoxide openings. Use of the above strategy for the
preparation of additional iminosugars, utilising different
monosaccharide starting materials, is under way in our
laboratory and will be reported in due course.
11. Yamashita, T.; Yasuda, K.; Kizu, H.; Kameda, Y.;
Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Asano, N.
J. Nat. Prod. 2002, 65, 1875–1881.
ꢀ
12. Valpuesta, M.; Durante, P.; Lopez-Herrera, F. J. Tetra-
hedron Lett. 1995, 36, 4681–4684.
13. Reitz, A. B.; Baxter, E. W. Tetrahedron Lett. 1990, 31,
6777–6780.
14. Selected data for 3a and 3b. Compound 3a. 1H NMR
(CDCl3): d 4.93 (dd, J5;6 ¼ 6:4, H-5), 4.70 (dd, J4;5 ¼ 5:2,
H-4), 4.57 (d, J2;3 ¼ 5:3, H-2), 2.75 (m, H-6), 2.68 (m,
J3;4 ¼ 6:3, H-3). 13C NMR (CDCl3): d 80.6 (C-5), 78.7 (C-
4), 67.7 (C-2), 67.6 (C-3), 66.4 (C-6). HRMS: calcd for
C40H47N2O5 (MHþ) 635.3485, found 635.3457. Com-
1
pound 3b. H NMR (CDCl3): d 5.51 (d, J2;3 ¼ 8:2, H-2),
4.72 (dd, J4;5 ¼ 6:0, H-4), 4.60 (dd, J5;6 ¼ 6:2, H-5), 3.06
(dd, J3;4 ¼ 4:6, H-3), 2.73 (m, H-6). 13C NMR (CDCl3): d
79.5 (C-5), 78.8 (C-4), 69.2 (C-2), 65.7 (C-3), 65.1 (C-6).
15. Cossy, J.; Dumas, C.; Gomez Pardo, D. Eur. J. Org.
Chem. 1999, 1693–1699.
Acknowledgements
This research was supported with funds from the
ꢀ
Direccion General de Investigacion Cientıfica y Tecnica
(Ref. BQU2001-1576) and from the Direccion General
ꢀ
ꢀ
ꢀ
16. Selected data for 5b. 1H NMR (CDCl3): d 4.50 (H-4, H-5),
4.05 (H-2), 3.50 (H-3), 3.20 (H-6), 3.10 (H-7,70). 13C NMR
(CDCl3): d 83.1 (C-3), 80.3 (C-6), 75.6 (C-4, C-5), 56.2 (C-
2), 44.5 (C-7).
17. Yields are given after product purification and are not
optimised. The deprotection of the products is under way
in our laboratory and will be reported in a full account of
our work.
ꢀ
ꢀ
ꢀ
de Universidades e Investigacion, Consejerıa de Edu-
cacion y Ciencia, Junta de Andalucıa (FQM 0158). We
ꢀ
ꢀ
ꢀ
wish to thank Dr. R. Rico (Universidad de Malaga) and
Dr. M. Angeles Pradera and Unidad de Espectroscopıa
ꢀ
de Masas de la Universidad de Sevilla for mass spectral
data.