2810
T. V. Hansen, L. Skattebøl / Tetrahedron Letters 45 (2004) 2809–2811
Scheme 1. Reagents and conditions: (i) LiAIH4, ether, D; (ii) (PhS)2, Bu3P, THF; (iii) KHSO5, MeOH, 0 ꢁC; (iv) (a) LDA, THF, )78 ꢁC, (b) methyl
5-bromovalerate, THF; (v) (a) Na(Hg), Na2HPO4, MeOH, )20 ꢁC, (b) LiOH, H2O, MeOH.
Scheme 2. Reagents and conditions: (i) (COCl)2, CH2Cl2; (ii) 6, Pd(PPh3)4 (10%), THF, D; (iii) Zn(BH4)2, THF, 0–25 ꢁC; (iv) (a) NaCN, CH2Cl2,
(b) MnO2, MeOH; (v) 14, Pd(PPh3)4 (10%), THF, D; (vi) TsNHNH2, MeOH, (b) NaB(CN)H3, MeOH; (vii) DIBAL-H, )78 ꢁC, THF.
ꢀ
3. Ortega, M. J.; Zubia, E.; Carballo, J. L.; Salva, J.
chemoselective reactions. However, some initial experi-
ments were unsatisfactory, and we chose to prepare 4 by
a similar route to that described above, viz. reaction of
the stannylpyrrole 14 with the acid chloride 12 under
Stille conditions, as outlined in Scheme 1. Transforma-
tion of the aldehyde function of 6 into a methyl carb-
oxylate group using the one-pot cyanohydrin procedure
reported by Corey et al.15 provided the organotin
derivative 14 in 86% yield.14 It underwent Stille coupling
with the acid chloride 12 to give the pyrrole 1514 (74%
yield), the carbonyl function of which was transformed
to a methylene group by reduction of the corresponding
tosylhydrazone with NaB(CN)H3. The ester thus
obtained was finally reduced by DIBAL-H in THF to
give 4 in 46% yield, which exhibited spectral data in
agreement with those reported for mycalazal 2.3
Tetrahedron 1997, 53, 331–340.
4. Holmeide, A. K.; Skattebøl, L.; Sydnes, M. J. Chem. Soc.,
Perkin. Trans. 1 2001, 1942–1946.
5. Flock, S.; Lundquist, M.; Skattebøl, L. Acta Chem. Scand.
1999, 53, 436–445.
6. Holmeide, A. K.; Skattebøl, L. J. Chem. Soc., Perkin.
Trans. 1 2001, 2271–2276.
7. Flock, S.; Skattebøl, L. J. Chem. Soc., Perkin. Trans. 1
2000, 3071–3076.
8. Holmeide, A. K.; Skattebøl, L. Tetrahedron 2003, 59,
7157–7162.
9. Denat, F.; Gaspard-Iloughmane, H.; Dubac, J. J. Orga-
nomet. Chem. 1992, 423, 173–182.
10. Nabbs, B. K.; Abell, A. D. Bioorg. Med. Chem. Lett. 1999,
9, 505–508.
ꢀ
11. Kuklev, D. V.; Popkov, A. A.; Kasyanov, S. P.; Akulin,
V. N.; Bezuglov, V. V. Bioorg. Khim. 1996, 22, 219–222.
12. Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 1409–
1412.
13. Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R.
Tetrahedron Lett. 1976, 3477–3478.
14. Spectral data of selected compounds: (all-Z)-
10,13,16,19,22-pentacosapentaenoic acid 5: pale yellow
oil; IR (film) 3300–3560, 1712 cmꢀ1; 1H NMR (300 MHz):
d 0.94 (t, J 7.5 Hz, 3H), 1.20–1.90 (m, 10H), 2.00–2.06 (m,
4H), 2.26 (t, J 7 Hz, 2H), 2.65–2.85 (m, 10H), 5.24–5.40
(m, 10H), 11.72 (br s, 1H); 13C NMR (75 MHz): d 14.13
(CH3), 22.74, 25.20, 25.44 (3 · CH2), 25.62 (3 · CH2),
26.15, 26.34, 26.42, 27.15, 28.52, 28.64, 32.43, (7 · CH2),
126.23, 128.41, 128.56, 128.61, 128.67, 128.73, 129.24,
129.31, 129.68, 129.79 (10 · CH), 176.31 (C); HRMS calcd
In conclusion, the syntheses of the naturally occurring
pyrrole derivatives 3 and 4 confirmed the assigned
structures and provided sufficient material for biological
testing.
References and notes
1. Rinehart, K. L.; Tachibana, K. J. Nat. Prod. 1995, 58,
344–358.
2. Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1–48.