First author et al.
Report
(d) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S.
(a) Miller, L. L.; Hoffmann, A. K. Electrochemical Formation of Carbonium
and Iodonium Ions from Alkyl and Aryl iodides. J. Am. Chem. Soc. 1967, 89,
593-597; (b) Hoffelner, H.; Lorch, H. W.; Wendt, H. Anodic Phenyl-onium
Cation Formation. II. Reaction Mechanism and Optimization for the
Anodic Formation of Diphenyliodonium Cations. J. Electroanal. Chem.
Interfacial Electrochem. 1975, 66, 183-194; (c) Peacock, M. J.; Pletcher, D.
The Electrosynthesis of Diaryliodonium Salts. Tetrahedron Lett. 2000, 41,
8995-8998; (d) Peacock, M. J.; Pletcher, D. The Synthesis of
Diaryliodonium Salts by the Anodic Oxidation of Aryl Iodide/Arene
Mixtures. J. Electrochem. Soc. 2001, 148, D37-D42; (e) Watts, K.; Gattrell,
W.; Wirth, T. A Practical Microreactor for Electrochemistry in Flow.
Beilstein J. Org. Chem. 2011, 7, 1108-1114; (f) Francke, R.; Broese, T.;
Roesel, A. F. Electrochemistry of Hypervalent Iodine Compounds. In
Patai’s Chemistry of Functional Groups, Wiley, Hoboken, 2018.
(a) Mueller, P.; Godoy, J. Ruthenium-Catalyzed Oxidations with
Iodosylbenzene Derivatives. Substituent Effects on Selectivity in
Oxidation of Sulfides and Alcohols. Helv. Chim. Acta 1983, 66, 1790-1795;
(b) Katritzky, A. R.; Gallos, J. K.; Durst, H. D. Structure of and Electronic
Interactions in Aromatic Polyvalent Iodine Compounds: a Carbon-13 NMR
Study. Magn. Reson. Chem. 1989, 27, 815-822; (c) Hiller, A.; Patt, J. T.;
Steinbach, J. NMR study on the structure and stability of 4-substituted
aromatic iodosyl compounds. Magn. Reson. Chem. 2006, 44, 955-958.
(a) Zhdankin, V. V. Benziodoxole-Based Hypervalent Iodine Reagents in
Organic Synthesis. Curr. Org. Synth. 2005, 2, 121-145; (b) Hari, D. P.;
Caramenti, P.; Waser, J. Cyclic Hypervalent Iodine Reagents: Enabling
Tools for Bond Disconnection via Reactivity Umpolung. Acc. Chem. Res.
2018, 51, 3212-3225.
Copper-Catalyzed Electrochemical C-H Amination of Arenes with
Secondary Amines. J. Am. Chem. Soc. 2018, 140, 11487-11494; (e) Feng,
E.; Hou, Z.; Xu, H.-C. Electrochemical Synthesis of Tetrasubstituted
Hydrazines by Dehydrogenative N-N Bond Formation. Chin. J. Org. Chem.
2019, 39, 1424-1828. (f) Cao, Z.; Liu, J.; Chu, Y.; Zhao, F.; Zhu, Y.; She, Y.
Paired Electro-synthesis of Aryl Nitriles. Chin. J. Org. Chem. 2019, 39,
2499-2506.
(a) Elsherbini, M.; Wirth, T. Hypervalent Iodine Reagents by Anodic
Oxidation:
A Powerful Green Synthesis. Chem. - Eur. J. 2018, 24,
13399-13407; (b) Francke, R. Electrogenerated Hypervalent Iodine
Compounds as Mediators in Organic Synthesis. Curr. Opin. Electrochem.
2019, 15, 83-88; (c) Fuchigami, T.; Fujita, T. Electrolytic Partial
Fluorination of Organic Compounds. 14. The First Electrosynthesis of
Hypervalent Iodobenzene Difluoride Derivatives and Its Application to
Indirect Anodic gem-Difluorination. J. Org. Chem. 1994, 59, 7190-7192; (d)
Hara, S.; Hatakeyama, T.; Chen, S.-Q.; Ishi-i, K.; Yoshida, M.; Sawaguchi,
M.; Fukuhara, T.; Yoneda, N. Electrochemical Fluorination of β-Dicarbonyl
Compounds Using p-Iodotoluene Difluoride as a Mediator. J. Fluorine
Chem. 1998, 87, 189-192; (e) Kajiyama, D.; Inoue, K.; Ishikawa, Y.;
Nishiyama, S.
A
Aynthetic Approach to Carbazoles Using
Electrochemically Generated Hypervalent Iodine Oxidant. Tetrahedron
2010, 66, 9779-9784; (f) Sawamura, T.; Kuribayashi, S.; Inagi, S.;
Fuchigami, T. Use of Task-Specific Ionic Liquid for Selective
Electrocatalytic Fluorination. Org. Lett. 2010, 12, 644-646; (g) Kajiyama,
D.; Saitoh, T.; Nishiyama, S. Application of electrochemically generated
hypervalent iodine oxidant to natural products synthesis.
Electrochemistry 2013, 81, 319-324; (h) Broese, T.; Francke, R.
Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based
on Ionically Tagged Phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol.
Org. Lett. 2016, 18, 5896-5899; (i) Gao, W.-C.; Xiong, Z.-Y.; Pirhaghani, S.;
Wirth, T. Enantioselective Electrochemical Lactonization Using Chiral
Iodoarenes as Mediators. Synthesis 2019, 51, 276-284; (j) Haupt, J. D.;
Berger, M.; Waldvogel, S. R. Electrochemical Fluorocyclization of
N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator. Org.
Lett. 2019, 21, 242-245; (k) Moeckel, R.; Babaoglu, E.; Hilt, G.
(a) Yusubov, M. S.; Maskaev, A. V.; Zhdankin, V. V. Iodonium Salts in
Organic Synthesis. ARKIVOC 2011, 370-409; (b) Aradi, K.; Toth, B. L.;
Tolnai, G. L.; Novak, Z. Diaryliodonium Salts in Organic Syntheses: A
Useful Compound Class for Novel Arylation Strategies. Synlett 2016, 27,
1456-1485; (c) Olofsson, B. Arylation with Diaryliodonium Salts. Top. Curr.
Chem. 2016, 373, 135-166; (d) Chatterjee, N.; Goswami, A. Synthesis and
Application of Cyclic Diaryliodonium Salts:
A
Platform for
Bifunctionalization in a Single Step. Eur. J. Org. Chem. 2017, 2017,
3023-3032; (e) Pacheco-Benichou, A.; Besson, T.; Fruit, C.
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed
C- and N-arylation of Heteroarenes. Catalysts 2020, 10, 483.
Iodine(III)-Mediated
Electrochemical
Trifluoroethoxylactonisation:
Rational Reaction Optimisation and Prediction of Mediator Activity. Chem.
- Eur. J. 2018, 24, 15781-15785; (l) Koleda, O.; Broese, T.; Noetzel, J.;
Roemelt, M.; Suna, E.; Francke, R. Synthesis of Benzoxazoles Using
Electrochemically Generated Hypervalent Iodine. J. Org. Chem. 2017, 82,
11669-11681; (m) Elsherbini, M.; Winterson, B.; Alharbi, H.;
Folgueiras-Amador, A. A.; Genot, C.; Wirth, T. Continuous-Flow
Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic
Applications. Angew. Chem., Int. Ed. 2019, 58, 9811-9815. (n) Maity, A.;
Frey, B. L.; Hoskinson, N. D.; Powers, D. C. Electrocatalytic C-N Coupling
via Anodically Generated Hypervalent Iodine Intermediates. J. Am. Chem.
Soc. 2020, 142, 4990-4995. (o) Qian, P.; Zha, Z.; Wang, Z. Recent
Advances in C-H Functionalization with Electrochemistry and Various
Iodine-Containing Reagents. ChemElectroChem 2020, 7, 2527-2544; (P)
Doobary, S.; Sedikides, A. T.; Caldora, H. P.; Poole, D. L.; Lennox, A. J. J.
Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable
to Electron-rich Substrates. Angew. Chem., Int. Ed. 2020, 59, 1155-1160;
(q) Zhang, H.; Tang, R.; Shi, X.; Xie, L.; Wu, J. Recent Advances in Organic
Electrochemical Synthesis and Application of Hypervalent Iodine
Reagents. Chin. J. Org. Chem. 2019, 39, 1837-1845.
(a) Moriarty, R. M.; Condeiu, C.; Tao, A.; Prakash, O. New
Organohypervalent Iodine Reagents for α-Methylphosphonylations and
α-Diphenyl- and α-Dimethylphosphinylations. Tetrahedron Lett. 1997, 38,
2401-2404; (b) Murphy, G. K.; Racicot, L.; Carle, M. S. The Chemistry
between Hypervalent Iodine(III) Reagents and Organophosphorus
Compounds. Asian J. Org. Chem. 2018, 7, 837-851.
(a) Koser, G. F.; Wettach, R. H. Synthesis and Characterization of
[Methoxy(tosyloxy)iodo]benzene, an Acyclic Monoalkoxyiodinane. J. Org.
Chem. 1980, 45, 4988-4989; (b) Yoshimura, A.; Nguyen, K. C.; Rohde, G. T.;
Postnikov, P. S.; Yusubov, M. S.; Zhdankin, V. V. Hypervalent Iodine
Reagent Mediated Oxidative Heterocyclization of Aldoximes with
Heterocyclic Alkenes. J. Org. Chem. 2017, 82, 11742-11751.
(a) Souto, J. A.; Zian, D.; Muniz, K. Iodine(III)-Mediated Intermolecular
Allylic Amination under Metal-Free Conditions. J. Am. Chem. Soc. 2012,
134, 7242-7245; (b )Souto, J. A.; Martinez, C.; Velilla, I.; Muniz, K. Defined
Hypervalent Iodine(III) Reagents Incorporating Transferable Nitrogen
Groups: Nucleophilic Amination through Electrophilic Activation. Angew.
Chem., Int. Ed. 2013, 52, 1324-1328.
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.