3778
Y.-X. Chen et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3775–3778
system in investigating carbohydrate–protein interactions. The
multivalent cyclopeptide-centered glycoclusters bearing more
complex oligosaccharides have been also prepared through this
strategy in our lab using the readily accessible azido oligosaccha-
rides, which will be reported in due time. In addition, the flexible
peptide synthesis provides the chance to develop analogous cyclo-
peptide scaffolds with various size and spatial orientation for pre-
senting multivalent carbohydrates to be suitable for the
corresponding carbohydrate-binding proteins.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (Projects 20532020). We would thank Ms. Chen
Yuanyuan (Institution of Biophysics, Chinese Academic of Science)
for SPR support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
2. Lis, H.; Sharon, N. Chem. Rev. 1998, 98, 637.
3. Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321.
4. Mammen, M.; Choi, S. K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37,
2755.
5. Ohta, T.; Miura, N.; Fujitani, N.; Nakajima, F.; Niikura, K.; Sadamoto, R.; Guo, C.
T.; Suzuki, T.; Suzuki, Y.; Monde, K.; Nishimura, S. I. Angew. Chem., Int. Ed. 2003,
42, 5186.
6. Renaudet, O.; Dumy, P. Org. Lett. 2003, 5, 243.
Figure 2. Equilibrium response as a function of glycoclusters concentration. (a) for
tetravalent glycocluster 8; (b) for divalent glycocluster 9. Experimental data (black
squares) were fitted by using the steady state model to obtain values for the
thermodynamic association constants.
7. Renaudet, O.; Dumy, P. Tetrahedron Lett. 2004, 45, 65.
8. Renaudet, O.; Dumy, P. Bioorg. Med. Chem. Lett. 2005, 15, 3619.
9. Renaudet, O.; Dumy, P. Org. Biomol. Chem. 2006, 4, 2628.
10. Singh, Y.; Renaudet, O.; Defrancq, E.; Dumy, P. Org. Lett. 2005, 7, 1359.
11. Wittmann, V.; Seeberger, S. Angew. Chem., Int. Ed. 2000, 39, 4348.
12. Ambrosi, M.; Cameron, N. R.; Davis, B. G.; Stolnik, S. Org. Biomol. Chem. 2005, 3,
1476.
ize its interaction with Con A. The concentration-dependent over-
lay sensorgrams of 8 and 9 were recorded in Figure 1. It is shown
that the mannose—Con A interactions are rapid association and
dissociation processes and a plateau was reached before the disso-
ciation phase for each injection. Thus, affinity constants for both of
two glycocluster were calculated by using a general steady state
model that assumes the system achieved equilibrium during sam-
ple injections.31 A plot of the response signal at equilibrium as a
function of concentration for each of glycoclusters is adjusted to
a hyperbolic equation from which the thermodynamic affinity con-
stants can be obtained as described in Figure 2. The KA values of
divalent and tetravalent glycoclusters were respectively
1.35 ꢁ 104 Mꢀ1 and 8.01 ꢁ 104 Mꢀ1, indicative of 3.0-fold increases
in binding affinity for tetravalent 8 relative to divalent 9 (valency-
corrected values). So, it can be inferred that this tetravalent glyco-
cluster is effective in improving the weak carbohydrate–protein
interaction through ‘glycoside cluster effects’.
In summary, we have developed a facile strategy for the synthe-
sis of cyclopeptide-centered glycoclusters. The cyclopeptide scaf-
folds bearing di- or tetra-alkynes have been synthesized for
highly chemoselective and efficient attachment of azido mono-
mannose through Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddi-
tion. Furthermore, the affinity of these two synthetic multivalent
glycoclusters 8 and 9 to Con A have been determined by SPR tech-
nique. It is observed that tetravalent glycocluster 8 has 3.0-fold in-
crease in binding affinity relative to divalent glycocluster 9
(valency-corrected values), which indicates the potential of this
13. Thoma, G.; Streiff, M. B.; Katopodis, A. G.; Duthaler, R. O.; Voelcker, N. H.;
Ehrhardt, C.; Masson, C. Chem. Eur. J. 2005, 12, 99.
14. Andre, S.; Kaltner, H.; Furuike, T.; Nishimura, S. I.; Gabius, H. J. Bioconjugate.
Chem. 2004, 15, 87.
15. Carpenter, C.; Nepogodiev, S. A. Eur. J. Org. Chem. 2005, 3286.
16. Fulton, D. A.; Pease, A. R.; Stoddart, J. F. Isr. J. Chem. 2000, 40, 325.
17. Fulton, D. A.; Stoddart, J. F. J. Org. Chem. 2001, 66, 8309.
18. Fulton, D. A.; Stoddart, J. F. Bioconjugate Chem. 2001, 12, 655.
19. Dondoni, A.; Marra, A. J. Org. Chem. 2006, 71, 7546.
20. Gao, Y. J.; Eguchi, A.; Kakehi, K.; Lee, Y. C. Bioorg. Med. Chem. 2005, 13,
6151.
21. Kohn, M.; Benito, J. M.; Mellet, C. O.; Lindhorst, T. K.; Fernandez, J. M. G. Chem.
Biochem. 2004, 5, 771.
22. Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 3816.
23. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
24. Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
25. Dondoni, A.; Giovannini, P. P.; Massi, A. Org. Lett. 2004, 6, 2929.
26. Lin, H. N.; Walsh, C. T. J. Am. Chem. Soc. 2004, 126, 13998.
27. Joosten, J. A. F.; Tholen, N. T. H.; El Maate, F. A.; Brouwer, A. J.; van Esse, G. W.;
Rijkers, D. T. S.; Liskamp, R. M. J.; Pieters, R. J. Eur. J. Org. Chem. 2005, 3182.
28. Cheshev, P.; Marra, A.; Dondoni, A. Org. Biomol. Chem. 2006, 4, 3225.
29. Gouin, S. G.; Vanquelef, E.; Fernandez, J. M. G.; Mellet, C. O.; Dupradeau, F. Y.;
Kovensky, J. J. Org. Chem. 2007, 72, 9032.
30. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C. H. J. Am. Chem. Soc. 2002,
124, 14397.
31. Vila-Perello, M.; Gallego, R. G.; Andreu, D. Chem. Biochem. 2005, 6, 1831.
32. Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. J. Am. Chem. Soc. 2003,
125, 6140.
33. Beccati, D.; Halkes, K. M.; Batema, G. D.; Guillena, G.; de Souza, A. C.; van Koten,
G.; Kamerling, J. P. Chem. Biochem. 2005, 6, 1196.
34. Al-Mughaid, H.; Grindley, T. B. J. Org. Chem. 2006, 71, 1390.
35. Cioffi, E. A. Curr. Top. Med. Chem. 2008, 8, 152.
36. Lepore, S. D.; He, Y. J. Org. Chem. 2003, 68, 8261.
37. Babu, A. R. S.; Raghunathan, R. Tetrahedron Lett. 2007, 48, 6809.