Scheme 2 Bzl = -CH2Ph, Cbz = -C(O)OCH2Ph. Reagents and conditions: i 2-methoxypropene, CSA, CH2Cl2, rt; ii mixed acid anhydride (prepared from
N-benzyloxycarbonyl-O-benzyl- -serine and 2,4,6-trichlorobenzoylchloride, Et3N, THF), DMAP, toluene–THF, rt; iii H2, 10% Pd–C ethylenediamine
L
complex, MeOH, rt, then 14, WSC4HCl, HOBt, DMF, rt; iv AcOH–H2O (7+3), rt; v TEMPO, KBr, NaOCl, NaHCO3, H2O–CH2Cl2 (1+15), 0 °C, then
NaClO2, HOSO2NH2, NaH2PO4, t-BuOH–H2O (4+1), rt; vi TFA, CH2Cl2, 0 °C; vii DEPC, Et3N, DMF (0.01 mol dm23 solution), rt; viii H2, 20% Pd(OH)2-C,
MeOH, rt; ix Ac2O, pyridine, 0 °C.
H, d, J 7.4), 1.40–1.78 (2 H, m), 1.84 (1 H, m), 2.06 (3 H, s), 2.13 and 2.66
compound 15 was isolated in pure form in 55% overall yield
(each 1 H, 2 m), 2.91 and 3.39 (each 1 H, 2br s), 3.64 (1 H, m), 3.97 (1 H,
dd, J 6.9 and 6.9), 4.21, 4.44 and 4.48 (each 1 H, 3 m), 4.49 (1 H, dd, J 5.5
and 11.3), 4.65 (1 H, dd, J 7.2 and 11.3), 4.86 (1 H, m), 6.71, 7.20 and 7.51
to give aldehyde, which was further oxidized by sodium chlorite
(each 1 H, 3br s); HRMS (FAB) m/z 656.4477, calcd for C34H62N3O9 (M +
to afford carboxylic acid 17. Treatment of 17 with TFA
H) 656.4486.
from 12. Acid hydrolysis of 15 gave triol 16 (94% yield). The
primary alcohol in 16 was selectively oxidized with TEMPO14
provided amino carboxylic acid 18. The crucial step, macro-
lactamization of 18, was successfully carried out under Shioiri’s
protocol15 [(diethyl phosphorocyanidate (DEPC) in DMF (0.01
mol dm23)] to give macrocycle 19 in 41% yield from 16.
Removal of the O-benzyl group in 19 by hydrogenolysis
afforded triol 20, which was treated with acetic anhydride in
pyridine at 0 °C to furnish stevastelin B 1 in 67% yield from 19.
The direct comparison of synthetic 1 with natural stevastelin
B,§ kindly provided by Nippon Kayaku Co., Ltd., revealed that
the synthetic compound is unambiguously identical with the
natural product, confirming the proposed whole structure of
stevastelin B.¶
¶ 1H and 13C NMR spectral data of natural stevastelin B had been originally
reported as DMSO-d6 solutions [ref.3(a)], whereas those of Yamamoto’s
synthetic sample were presented as CDCl3 solutions (ref. 4). 1H and 13C
NMR spectra of our synthetic 1 were fully identical with those of the natural
product in both CDCl3 and DMSO-d6; however, our data in CDCl3 were not
consistent with the data reported by Yamamoto. The [a]D value of
25
Yamamoto {[a]D 218.1 (c 1.0, CHCl3)} (ref. 4) is also somewhat
different from ours and that of the natural product.
1 T. Morino, A. Masuda, M. Yamada, M. Nishimoto, T. Nishikiori, S.
Saito and N. Shimada, J. Antibiot., 1994, 47, 1341.
2 T. Morino, K.-i. Shimada, A. Masuda, M. Nishimoto and S. Saito, J.
Antibiot., 1996, 49, 1049.
3 (a) T. Morino, K.-i. Shimada, A. Masuda, N. Yamashita, M. Nishimoto,
T. Nishikiori and S. Saito, J. Antibiot., 1996, 49, 564; (b) K.-i. Shimada,
T. Morino, A. Masuda, M. Sato, M. Kitagawa and S. Saito, J. Antibiot.,
1996, 49, 569.
We thank Drs T. Morino and T. Aoyama (Pharmaceutical
Group, Nippon Kayaku Co., Ltd., Tokyo, Japan) for a gift of
natural stevastelin B.
4 N. Kohyama and Y. Yamamoto, Synlett, 2001, 694.
5 T. K. Chakraborty, S. Ghosh and S. Dutta, Tetrahedron Lett., 2001, 42,
5085.
6 T. Hamaguchi, A. Masuda, T. Morino and H. Osada, Chem. Biol., 1997,
4, 279.
7 N. Chida and S. Ogawa, Chem. Commun., 1997, 807.
8 N. Chida, M. Yoshinaga, T. Tobe and S. Ogawa, Chem. Commun.,
1997, 1043; N. Chida, K. Yamada and S. Ogawa, J. Chem. Soc., Perkin
Trans. 1, 1993, 1957.
9 N. Chida, T. Tobe and S. Ogawa, Tetrahedron Lett., 1994, 35, 7249.
10 B. H. Lipshutz and S. Sengupta, Org. React., 1992, 41, 135; N. Chida,
N. Sakata, K. Murai, T. Tobe, T. Nagase and S. Ogawa, Bull. Chem. Soc.
Jpn., 1998, 71, 259.
11 H. Sakurai, A. Shirahata, K. Sakai and A. Hosomi, Synthesis, 1979,
740.
12 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull.
Chem. Soc. Jpn., 1979, 52, 1989.
13 H. Sajiki, K. Hattori and K. Hirota, J. Org. Chem., 1998, 63, 7990.
14 T. Inokuchi, S. Matsumoto, T. Nishiyama and S. Torii, J. Org. Chem.,
1990, 55, 462.
15 T. Shioiri, Y. Yokoyama, Y. Kasai and S. Yamada, Tetrahedron, 1976,
32, 2211; S. Yamada, Y. Kasai and T. Shioiri, Tetrahedron Lett., 1973,
1595; S. Takuma, Y. Hamada and T. Shioiri, Chem. Pharm. Bull., 1982,
30, 3147.
Notes and references
‡ These peptides were prepared by condensation (WSC4HCl, HOBt, DMF)
of appropriate protected amino acids which were purchased from Peptide
Institute, Inc. (Osaka, Japan).
17
§ Natural 1: [a]D 248 (c 0.1, CHCl3) (measured in our laboratory).
21
Synthetic 1: [a]D 251 (c 0.25, CHCl3); dH (300 MHz, DMSO-d6) 0.73 (3
H, d, J 7.1, 4-Me), 0.82 (3 H, d, J 6.1, val-Me), 0.85 (3 H, t, J 6.3, 18-H3),
0.88 (3 H, d, J 6.6, val-Me), 1.00 (3 H, d, J 6.1, thr-Me), 1.13 (3 H, d, J 7.6,
2-Me), 1.23 (22 H, m, 7–17-CH2), 1.43 and 1.53 (each 1 H, 2 m, 6-H2), 1.72
(1 H, m, 4-H), 1.98 (3 H, s, OAc), 2.10 (1 H, m, val-bH), 2.19 (1 H, m, 2-H),
3.61 (1 H, m, 3-H), 3.94 (1 H, dd J 7.1 and 10.7, ser-bH), 3.98 (1 H, dd, J
10.3 and 11.0, val-aH), 4.18 (1 H, m, thr-bH), 4.27 (1 H, bd J 9.1, thr-aH),
4.40 (1 H, dd, J 6.6 and 10.7, ser-bH), 4.73 (1 H, ddd J 6.6, 7.1 and 8.1, ser-
aH), 4.90 (1 H, d, J 4.4, thr-OH), 4.92 (1 H, m, 5-H), 5.52 (1 H, d, J 5.1,
3-OH), 7.81 (1 H, d, J 8.1, ser-NH), 7.93 (1 H, d, J 10.3, val-NH) and 8.32
(1 H, d, J 9.1, thr-NH); dC (75 MHz, DMSO-d6) 6.5 (4-CH3), 13.9 (18-C),
16.4 (2-CH3), 19.0 (val-CH3), 19.4 (val-CH3), 20.5 (thr-CH3), 20.6
(COCH3), 22.1 (17-C), 25.4 (7-C), 28.69, 28.73, 28.9, 28.99, 29.04, 29.8
and 31.3 (8–16-C and val-bC), 31.7 (6-C), 40.0 (4-C), 46.3 (2-C), 49.9 (ser-
aC), 57.7 (thr-aC), 61.2 (val-aC), 62.4 (ser-bC), 66.8 (thr-bC), 75.3 (3-C),
78.8 (5-C), 169.4 (ser-CO), 170.1 (OCOCH3), 170.4 (thr-CO), 171.3 (val-
CO) and 174.9 (1-C); dH (300 MHz, CDCl3) 0.88 (3 H, t, J 6.3), 1.03 (3 H,
d, J 6.3), 1.05 (6 H, d, J 6.6), 1.14 (3 H, d, J 6.3), 1.25 (22 H, m), 1.31 (3
CHEM. COMMUN., 2002, 1280–1281
1281