Reaction of Pd2I2(l-S)(dmpm)2 (2c) with m-CPBA
Notes and references
1 C. B. Pamplin, S. J. Rettig, B. O. Patrick and B. R. James, Inorg. Chem,
2011, 50, 8094.
2 (a) B. R. James, Pure Appl. Chem., 1997, 69, 2213 and refs. therein;
(b) T. H. Y. Wong, A. F. Barnabas, D. Sallin and B. R. James, Inorg.
Chem., 1995, 34, 2278; (c) A. F. Barnabas, D. Sallin and B. R. James,
Can. J. Chem., 1989, 67, 2009.
To a brown solution of 2c (58 mg, 0.075 mmol) in CH2Cl2
(10 mL) at -30 ◦C was added a cold solution of m-CPBA
(23 mg, ~1.0 equiv.) in CH2Cl2 (1 mL). The solution became dark
brown and was stirred for 30 min at r.t. In situ NMR analysis
revealed small amounts of 2c and Pd2I2(dmpm)2 (1c), and a new,
unidentified species (Z) as the major product. Addition of Et2O
(10 mL) and hexanes (10 mL) precipitated the Pd-containing
species as a brown solid mixture that contained Z in ~95% purity
(1H NMR). The solid was collected, washed with hexanes (2 ¥
10 mL) and dried at 78 ◦C in vacuo for 24 h. 1H NMR (CDCl3): d
1.75–1.89 (m, unidentified), 1.81 (s, CH3, 1c), 2.11 (s, 12H, CH3,
Z), 2.82 (qn, 4H, CH2, JPH = 3.6, 1c), 3.57 (qn, 2H, CH2, JPH
= 4.3, Z), 7.38, 7.41, 7.92 and 7.77 (m, traces of m-CPBA or
m-chlorobenzoic acid), 9.44 (br s, OH, traces of m-CPBA or m-
3 D. E. Schwarz, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 2003,
42, 2410.
4 (a) G. Besenyei, C.-L. Lee, J. Gulinski, S. J. Rettig, B. R. James, D. A.
Nelson and M. A. Lilga, Inorg. Chem., 1987, 26, 3622; (b) A. L. Balch,
L. S. Benner and M. M. Olmstead, Inorg. Chem., 1979, 18, 2996.
5 (a) M. L. Kullberg and C. P. Kubiak, Inorg. Chem., 1986, 25, 26; (b) M.
L. Kullberg and C. P. Kubiak, Organometallics, 1984, 3, 632.
6 H. H. Karsch, Z. Naturforsch, 1979, 34b, 31.
7 H. H. Karsch, G. Baumgartner, S. Gamper, J. Lachmann and G. Mu¨ller,
Chem. Ber., 1992, 125, 1333.
8 M. Baker, J. R. Dilworth, J. G. Sunley, and N. Wheatley, US Patent
5488153 (1996).
9 S. O. Grim and E. D. Walton, Inorg. Chem., 1980, 19, 1982.
10 P. G. Jones, A. K. Fischer, J. Krill and R. Schmutzler, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2002, E58(9), o1016 and refs. therein.
11 D. W. H. Rankin, H. E. Robertson and H. H. Karsch, J. Mol. Struct.,
1981, 77, 121.
12 G. P. Suranna, P. Mastrorilli, C. F. Nobile and W. Keim, Inorg. Chim.
Acta, 2000, 305, 151.
1
chlorobenzoic acid). 31P{ H} NMR (CDCl3): d -38.4 (s, 1c), -20.5
(s, unidentified), -18.1 (s, Z). Anal. Found: C, 20.44; H, 3.52. Anal.
Calcd for Pd2I2(m-SO)(dmpm)2 (6c), C10H28I2OP4Pd2S: C, 15.26;
H, 3.59. Anal. Calcd for Pd2I2(m-SO2)(dmpm)2 C10H28I2O2P4Pd2S:
C, 14.96; H, 3.51.
13 J. R. Sowa and R. J. Angelici, Inorg. Chem., 1991, 30, 3534.
14 P. A. Dean, Can. J. Chem., 1979, 57, 754.
Reaction of Pd2I2(l-S)(dmpm)2 (2c) with I2
15 W. McFarlane and D. S. Rycroft, J. Chem. Soc., Dalton Trans., 1973,
Addition of I2 (1 equiv.) to a solution of 2c in CDCl3 results in
the instantaneous formation of Pd2I2(m-I)2(dmpm)2 and elemental
sulfur. The purple solution was evaporated and the residue was
extracted with CS2, and this suspension was filtered through a
short column of alumina to remove traces of the insoluble Pd
complex. The filtrate was evaporated to provide a pale yellow
residue, and the low-resolution EI mass spectrum of this material
exhibited the characteristic fragmentation pattern of S8.42
2162.
16 H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc., 1995, 27, 1.
17 D. H. Brown, R. J. Cross and R. Keat, J. Chem. Soc., Dalton Trans.,
1980, 871.
18 C. B. Pamplin, Ph.D. Thesis, The University of British Columbia,
Vancouver, British Columbia, Canada, 2001.
19 T. Y. H. Wong, S. J. Rettig, B. O. Patrick and B. R. James, Inorg. Chem.,
1999, 38, 2143.
20 For example: (a) N. K. Gusarova, S. I. Verkhoturova, T. I. Kazantseva,
V. L. Mikhailenko, S. N. Arbuzova and B. A. Trofimov, Mendeleev
Commun., 2011, 21, 17; (b) A. N. Kharat, A. Bakhoda, T. Hajiashrafi
and A. Abbasi, Phosphorus, Sulfur Silicon Relat. Elem., 2010, 185, 2341;
(c) S. L. Kahn, M. K. Breheney, S. L. Martinak, S. M. Fosbenner, A. R.
Seibert, W. S. Kassel, W. G. Dougherty and C. Nataro, Organometallics,
2009, 28, 2119; (d) G. Baccolini, C. Boga and M. Mazzacurati, J. Org.
Chem., 2005, 70, 4774; (e) I. Haiduc, In Comprehensive Coordination
Chemistry II, J. A. McCleverty, T. J. Meyer, Eds; (Elsevier: Amsterdam,
2004) Vol. 1, pp 349–376.
21 P. Legzdins and L. Sa´nchez, J. Am. Chem. Soc., 1985, 107, 5525.
22 S. V. Evans, P. Legzdins, S. J. Rettig, L. Sa´nchez and J. Trotter,
Organometallics, 1987, 6, 7.
23 R. Han and G. L. Hillhouse, J. Am. Chem. Soc., 1998, 120, 7657.
24 F. A. Cotton, E. V. Dikarev and M. A. Petrukhina, Angew. Chem., Int.
Ed., 2001, 40, 1521 and refs. therein.
X-ray crystallographic analyses
Crystalline samples of 3a, 5 and 6b were prepared as described in
the Results and discussion sections. X-ray analyses were carried
out at 180 K on a Rigaku/ADSC CCD area detector with graphite
˚
monochromated Mo-Ka radiation (0.71069 A). The structures are
shown in Fig. 1, 3 and 5. Selected bond lengths and angles are
given in Tables 2 and 3, and some associated crystallographic
data are given in Table 4, with more details being provided
in the Supporting Information.† The final unit-cell parameters
were based on 9184 reflections with 2qmax = 60.1◦ for 3a, 44930
reflections with 2qmax = 61.0◦ for 5, and 16508 reflections with
2qmax = 60.1◦ for 6, in a series of f and w scans in oscillations of
0.50◦ (for 3a and 6b) and 0.30◦ (for 5), with respective exposures
of 15, 5 and 30.0 s; the crystal-to-detector distance was ~39 mm.
Data were processed using the d*TREK area detector program,43
and the structures were solved by direct methods.44 All refinements
were performed using the SHELXL-97 program45 via the WinGX
interface.46 All non-H-atoms in the three structures were refined
anisotropically. All the H-atoms were fixed in idealised, calculated
positions.
25 (a) Dictionary of Inorganic Compounds, 1st ed. Chapman and Hall, New
York, 1992, vol. 3, IC-021792; (b) N. E. Brese, P. J. Squattrito and J. A.
Ibers, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, C41,
1829; (c) B. Bogdanovic, M. Rubach and K. Seevogel, Z. Naturforsch.,
1983, 38B, 592.
26 C. B. Pamplin, S. J. Rettig, B. O. Patrick and B. R. James, Inorg. Chem.,
2003, 42, 4117.
27 T. Y. H. Wong, Ph.D. Thesis, The University of British Columbia,
Vancouver, British Columbia, Canada, 1996.
28 E. M. Padilla, J. A. Golen, P. N. Richmann and C. M. Jensen,
Polyhedron, 1991, 10, 1343.
29 C. Kluwe and J. A. Davies, Organometallics, 1995, 14, 4257.
30 W. Geary, Coord. Chem. Rev., 1971, 7, 81.
31 C. L. Lee, Y. P. Yang, S. J. Rettig, B. R. James, D. A. Nelson and M. A.
Lilga, Organometallics, 1986, 5, 2220.
32 A. L. Balch, C. T. Hunt, C. L. Lee, M. M. Olmstead and J. P. Farr, J.
Am. Chem. Soc., 1981, 103, 3764.
Acknowledgements
33 L.-S. Wang, R. McDonald and M. Cowie, Inorg. Chem., 1994, 33, 3735.
34 M. P. Brown, J. R. Fisher, R. J. Puddephatt and K. R. Seddon, Inorg.
Chem., 1979, 18, 2808.
We thank the Natural Sciences and Engineering Council of
Canada for funding and Dr Terrance Y. H. Wong for some initial
investigations in this area.
35 D. L. Oliver and G. K. Anderson, Polyhedron, 1992, 11, 2415.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 1991–2002 | 2001
©