LETTER
An Expeditious Route to GlcNAc-Cbz-Asn by Chemo-enzymatic Synthesis
59
(dd, 1 H, J = 3.9, 17.1 Hz), 2.85 (dd, 1 H, J = 4.4, 17.1 Hz),
1.86 (m, 1 H), 0.83 (d, 6 H, J = 6.3 Hz); 13C NMR (100 MHz,
CDCl3) 175.83, 170.36, 155.89, 135.84, 128.40, 128.01,
127.96, 71.98, 67.23, 50.24, 36.46, 27.63, 19.06; IR (KBr)
3350, 3127, 2954, 1761, 1727, 1692, 1280, 1224, 1063
cm–1. Its NMR spectrum was in good accordance with that
reported previously.12 No -ester was detected. In contrast,
the ring-opening reaction20 of a cyclic anhydride of N-Cbz-
aspartate with isobutyl alcohol gave a mixture of -ester and
-ester (ca. 10:1, 3.92 for -ester and 3.86 for -ester).
Attempts for enzyme-catalyzed selective hydrolysis21 of
diethyl N-Cbz-aspartate or ethyl N-Cbz-asparagine gave no
fruitful results, such as the formation of a diacid, or entirely
no reaction.
References
(1) (a) Kunz, H. Angew. Chem. Int. Ed. Engl. 1987, 26, 294.
(b) Taylor, C. M. Tetrahedron 1998, 54, 11317. (c) Seitz,
O. CHEMBIOCHEM 2000, 1, 214.
(2) (a) Yamamoto, K.; Kadowaki, S.; Watanabe, J.; Kumagai,
H. Biochem. Biophys. Res. Commun. 1994, 203, 244.
(b) Haneda, K.; Inazu, T.; Yamamoto, K.; Kumagai, H.;
Nakahara, Y.; Kobata, A. Carbohydr. Res. 1996, 292, 61.
(c) Mizuno, M.; Haneda, K.; Iguchi, R.; Muramoto, I.;
Kawakami, T.; Aimoto, S.; Yamamoto, K.; Inazu, T. J. Am.
Chem. Soc. 1999, 121, 284.
(3) Cowley, D. E.; Hough, L.; Peach, C. M. Carbohydr. Res.
1971, 19, 231.
(4) (a) Bolton, C. H.; Jeanloz, R. W. J. Org. Chem. 1963, 28,
3228. (b) Bolton, C. H.; Hough, L.; Khan, M. Y. Biochem. J.
1966, 101, 184.
(12) Yuki, H.; Okamoto, Y.; Taketani, Y.; Tsubota, T.;
Murabayashi, Y. J. Polymer Sci. 1978, 16, 2237.
(13) (a) Carpino, L. A.; Beyermann, M.; Wenschuh, H.; Bienert,
M. Acc. Chem. Res. 1996, 29, 268. (b) Manabe, S.; Ito, Y. J.
Am. Chem. Soc. 1999, 121, 9754.
(5) Matsuo, I.; Isomura, M.; Ajisaka, K. J. Carbohydr. Chem.
1999, 18, 841.
(6) Ito, Y.; Gerz, M.; Nakahara, Y. Tetrahedron Lett. 2000, 41,
1039.
(14) (a) Carpino, L. A.; Sadat-Aalaee, D.; Chao, H. G.; DeSelms,
R. H. J. Am. Chem. Soc. 1990, 112, 9651. (b) Carpino,
L. A.; Mansour, E. M. E. J. Org. Chem. 1992, 57, 6371.
(15) Mp 37.5-40.0 °C (colorless fine needles from CH2Cl2–
hexane); 1H NMR (400 MHz, CDCl3) 7.37 (m, 5 H), 5.72
(d, 1 H, J = 7.3 Hz), 5.14 (d, 1 H, J = 12.2 Hz), 5.10 (d, 1 H,
J = 12.2 Hz), 4.67 (ddd, 1 H, J = 2.4, 4.8, 7.3 Hz), 3.98 (d, 2
H, J = 6.8 Hz), 3.23 (dd, 1 H, J = 2.4, 18.1 Hz), 3.13 (dd, 1
H, J = 4.8, 18.1 Hz), 1.95 (m, 1 H), 0.92 (d, 6 H, J = 6.8 Hz);
13C NMR (100 MHz, CDCl3) 160.90 (d, J = 357 Hz),
169.21, 155.65, 135.67, 128.44, 128.20, 128.01, 72.43,
67.38, 49.98, 35.14 (d, J = 52 Hz), 27.64, 18.93; IR (KBr)
3341, 2961, 1840, 1727, 1691, 1533, 1294, 1269, 1096 cm–1.
(16) To a solution of 3 (782.9 mg, 2.42 mmol) in anhydrous DMF
(15 mL) was added NaHCO3 (383 mg, 4.56 mmol) and
fluoride (5b, 872.8 mg, 2.94 mmol) at room temperature.
After stirring for 2 h, the reaction mixture was filtered
through a Celite pad and washed with 1,4-dioxane. The
filtrate was evaporated and purified by silica gel column
chromatography. Elution with CHCl3–MeOH (5:1) afforded
1c (1.07 g, 84%). Mp 195.0–196.5 °C; [ ]D25 +6.9 (c 0.81,
MeOH); 1H NMR (400 MHz, CD3OD) 7.28 (m, 5 H), 5.09
(d, 1 H, J = 12.2 Hz), 5.05 (d, 1 H, J = 12.2 Hz), 4.93 (d, 1
H, J = 9.8 Hz), 4.58 (dd, 1 H, J = 4.9, 7.3 Hz), 3.88 (d, 2 H,
J = 6.8 Hz), 3.81 (dd, 1 H, J = 1.5, 12.2 Hz), 3.73 (t, 1 H, J
= 9.8 Hz), 3.64 (ddd, 1 H, J = 0.9, 3.4, 12.2 Hz), 3.44 (m, 1
H), 3.30 (m, 2 H), 2.79 (dd, 1 H, J = 4.9, 16.0 Hz), 2.68 (dd,
1 H, J = 7.3, 16.0 Hz), 1.90 (s, 3 H), 1.89 (m, 1 H), 0.90 (d,
6 H, J = 6.8 Hz); 13C NMR (100 MHz, CD3OD) 175.45,
172.73, 172.26, 158.96, 137.83, 129.31, 128.92, 128.82,
80.24, 79.67, 76.24, 72.50, 71.76, 67.74, 62.62, 56.06,
52.14, 38.49, 28.97, 22.92, 19.40; IR (KBr) 3295, 3091,
2957, 1749, 1703, 1654, 1546, 1296, 1271 cm–1. Anal.
Calcd. For C24H35N3O10: C, 54.85; H, 6.71; N, 8.00. Found:
C, 54.59; H, 6.84; N, 7.56.
(7) Inazu, T.; Kobayashi, K. Synlett 1993, 869.
(8) (a) Likhosherstov, L. M.; Novikova, O. S.; Derevitskaja, V.
A.; Kochetkov, N. K. Carbohydr. Res. 1986, 146, C1.
(b) Campa, C.; Donati, I.; Vetere, A.; Gamini, A.; Paoletti,
S. J. Carbohydr. Chem. 2001, 20, 263.
(9) Otvos, L. Jr.; Urge, L.; Hollosi, M.; Rwoblewski, K.;
Gradzyk, G.; Fasman, G. D.; Thurin, J. Tetrahedron Lett.
1990, 31, 5889.
(10) GlcNAc (2, 40.4 g, 182.9 mmol) was dissolved in H2O (220
mL) and saturated with NH4HCO3. The conversion of
GlcNAc into glucosylamine 3 was determined by 1H NMR
spectroscopy by comparing anomeric protons. After stirring
for 4 days at 35 °C, the conversion reached 86%, and the
solution was diluted with H2O (150 mL). The mixture was
desalted by AC-220-550 on Asahi Chemical Micro Acylyzer
S3. At the initial stage, the conductivity was 87.8 mS and
after the desaltation at the 15 V (1.07 A), it reached 0.6 mS.
NH4HCO3 was estimated to be 5.6 mmol/L based on the
calibration linear as described in Figure 2. The yields of 3
and 2 were quantitatively estimated to be 54% and 9%,
respectively, by 1H NMR using methyl -D-glucopyranoside
as internal standard. The mixture was frozen and lyophilized
to give a highly hygroscopic white powder (30.1 g). Again at
this stage, the amounts of 3 and 2 in the solid were estimated
to be 22.3 g (101 mmol) and 3.0 g (14 mmol), respectively.
No decomposition of 3 was observed into 2 and ammonia
through the lyophilization. 1H NMR (400 MHz, D2O) 4.16
(d, 1 H, J = 9.3 Hz), 3.85 (dd, 1 H, J = 2.1, 12.4 Hz), 3.69
(ddd, 1 H, J = 2.1, 4.6, 12.4 Hz), 3.62 (t, 1 H, J = 9.3 Hz),
3.52 (m, 1 H), 3.55-3.40 (m, 2 H), 2.07 (s, 3 H); 13C NMR
(100 MHz, D2O) 175.26, 85.01, 77.63, 75.36, 70.90, 61.71,
57.21, 23.21; IR (KBr) 3352, 1652, 1558, 1375, 1047 cm–1.
(11) Ester 5a was obtained from oxazolidinone 6a12 with sodium
isobutoxide. The alkoxide solution prepared from isobutyl
alcohol (37.8 mL) and sodium (0.83 g, 36.2 mmol) was
added dropwise into the solution of 6a (10.1 g, 36.2 mmol)
in isobutyl alcohol (55 mL) at 65 °C with stirring. After the
stirring was continued for 3 h, AcOH (10 g) was added to the
reaction mixture. Conventional work up procedure and
subsequent silica gel column chromatography of the residue
[CHCl3–MeOH–AcOH (90:3:2)] gave 5a (5.5 g, 47% yield).
Recrystallization from n-hexane–Et2O afforded fine
colorless needles. Mp 65.0–66.0 °C [lit.12 mp 68–69 °C];
[ ]D22 -4.4 (c 1.3, AcOH); [ ]43522 -10.3 (c 1.3, AcOH) [lit.12
[ ]42722 -11.8 (c 1.3, AcOH)]; 1H NMR (400 MHz, CDCl3)
7.28 (m, 5 H), 5.71 (d, 1 H, J = 8.3 Hz), 5.06 (m, 2 H), 4.58
(ddd, 1 H, J = 3.9, 4.4, 8.3 Hz), 3.92 (d, 2 H, J = 6.8 Hz), 3.04
(17) (a) Waldmann, H.; Sebastian, D. Chem. Rev. 1994, 94, 911.
(b) Braun, P.; Waldmann, H.; Kunz, H. Synlett 1992, 39.
(18) (a) Shin, C.; Takahashi, N.; Seki, M. Bull. Chem. Soc. Jpn.
1991, 64, 3575. (b) Hallinan, K. O.; Crout, D. H. G.;
Errington, W. J. Chem. Soc., Perkin 1 1994, 3537.
(c) Miyazawa, T.; Iwanaga, H.; Yamada, T.; Kuwata, S.
Biotechnol. Lett. 1994, 16, 373. (d) Eberling, J.; Braun, P.;
Kowalszyk, D.; Schultz, M.; Kunz, H. J. Org. Chem. 1996,
61, 2638.
(19) The coupling product (1c, 200.9 mg, 0.38 mmol) was
dissolved in a mixture of DMF (2.0 mL) and 0.2 M
phosphate buffer (pH 7.0, 2.0 mL). The pH was adjusted to
7.0 with 2 mol/L HCl, and papain (Sigma, P3375, 56.4 mg,
Synlett 2002, No. 1, 57–60 ISSN 0936-5214 © Thieme Stuttgart · New York