ACS Catalysis
Research Article
499. (h) Bandini, M.; Melloni, A.; Umani-Ronchi, A. New Catalytic
Approaches in the Stereoselective Friedel−Crafts Alkylation Reaction.
Angew. Chem., Int. Ed. 2004, 43, 550−556.
(11) Mai, P.; Zocher, G.; Stehle, T.; Li, S.-M. Structure-based
Protein Engineering Enables Prenyl Donor Switching of a Fungal
Aromatic Prenyltransferase. Org. Biomol. Chem. 2018, 16, 7461−7469.
(12) Hayashi, A.; Saitou, H.; Mori, T.; Matano, I.; Sugisaki, H.;
Maruyama, K. Molecular and Catalytic Properties of Monoacetyl-
phloroglucinol Acetyltransferase from Pseudomonas sp. YGJ3. Biosci.
Biotechnol. Biochem. 2012, 76, 559−566.
(5) Wessjohann, L. A.; Keim, J.; Weigel, B.; Dippe, M. Alkylating
Enzymes. Curr. Opin. Chem. Biol. 2013, 17, 229−235.
(6) (a) Tengg, M.; Stecher, H.; Offner, L.; Plasch, K.; Anderl, F.;
Weber, H.; Schwab, H.; Gruber-Khadjawi, M. Methyltransferases:
Green Catalysts for Friedel−Crafts Alkylations. ChemCatChem 2016,
(13) Schmidt, N. G.; Pavkov-Keller, T.; Richter, N.; Wiltschi, B.;
Gruber, K.; Kroutil, W. Biocatalytic Friedel-Crafts Acylation and Fries
Reaction. Angew. Chem., Int. Ed. 2017, 56, 7615−7619.
̈
8, 1354−1360. (b) Tengg, M.; Stecher, H.; Remler, P.; Eiteljorg, I.;
Schwab, H.; Gruber-Khadjawi, M. Molecular Characterization of the
C-Methyltransferase NovO of Streptomyces spheroides, a Valuable
Enzyme for Performing Friedel−Crafts Alkylation. J. Mol. Catal. B:
Enzym. 2012, 84, 2−8. (c) Struck, A.-W.; Thompson, M. L.; Wong, L.
S.; Micklefield, J. S-Adenosyl-methionine-dependent Methyltrans-
ferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and
Other Biotechnological Applications. ChemBioChem 2012, 13, 2642−
̇
(14) (a) Ządło-Dobrowolska, A.; Schmidt, N. G.; Kroutil, W.
Thioesters as Acyl Donors in Biocatalytic Friedel-Crafts-type
Acylation Catalyzed by Acyltransferase from Pseudomonas Protegens.
ChemCatChem 2019, 11, 1064−1068. (b) Schmidt, N. G.; Kroutil, W.
Acyl Donors and Additives for the Biocatalytic Friedel−Crafts
Acylation. Eur. J. Org. Chem. 2017, 5865−5871.
(15) (a) Lin, B.; Huang, J.-F.; Liu, X.-W.; Ma, X.-T.; Liu, X.-L.; Lu,
Y.; Zhou, Y.; Guo, F.-M.; Feng, T.-T. Rapid, Microwave-accelerated
Synthesis and Anti-osteoporosis Activities Evaluation of Morusin
Scaffolds and Morusignin L Scaffolds. Bioorg. Med. Chem. Lett. 2017,
27, 2389−2396. (b) Lee, P. J.; Shin, I.; Seo, S.-Y.; Kim, H.; Kim, H. P.
Upregulation of Both Heme Oxygenase-1 and ATPase Inhibitory
Factor 1 Renders Tumoricidal Activity by Synthetic Flavonoids via
Depleting Cellular ATP. Bioorg. Med. Chem. Lett. 2014, 24, 4845−
4849. (c) Spence, J. T. J.; George, J. H. Biomimetic Total Synthesis of
Ent-penilactone A and Penilactone B. Org. Lett. 2013, 15, 3891−3893.
(d) Resch, V.; Schrittwieser, J. H.; Siirola, E.; Kroutil, W. Novel
Carbon−carbon Bond Formations for Biocatalysis. Curr. Opin.
Biotechnol. 2011, 22, 793−799. (e) Singh, I. P.; Sidana, J.; Bharate,
S. B.; Foley, W. J. Phloroglucinol Compounds of Natural Origin:
Synthetic Aspects. Nat. Prod. Rep. 2010, 27, 393−416. (f) Chauthe, S.
K.; Bharate, S. B.; Sabde, S.; Mitra, D.; Bhutani, K. K.; Singh, I. P.
Biomimetic Synthesis and Anti-HIV Activity of Dimeric Phloroglu-
cinols. Bioorg. Med. Chem. 2010, 18, 2029−2036. (g) Bobik, A.;
Holder, G. M.; Ryan, A. J. Inhibitors of Hepatic Mixed Function
Oxidase. 3. Inhibition of Hepatic Microsomal Aniline Hydroxylase
and Aminopyrine Demethylase by 2, 6-and 2, 4-Dihydroxyphenyl
Alkyl Ketones and Related Compounds. J. Med. Chem. 1977, 20,
1194−1199.
̌
́
2655. (d) Crnovcic, I.; Sussmuth, R.; Keller, U. Aromatic C-
̈
Methyltransferases with Antipodal Stereoselectivity for Structurally
Diverse Phenolic Amino Acids Catalyze the Methylation Step in the
Biosynthesis of the Actinomycin Chromophore. Biochemistry 2010,
49, 9698−9705. (e) Stecher, H.; Tengg, M.; Ueberbacher, B. J.;
Remler, P.; Schwab, H.; Griengl, H.; Gruber-Khadjawi, M.
Biocatalytic Friedel−Crafts Alkylation Using Non-natural Cofactors.
Angew. Chem., Int. Ed. 2009, 48, 9546−9548. (f) Freitag, A.; Li, S. M.;
Heide, L. Biosynthesis of the Unusual 5,5-gem-Dimethyl-deoxysugar
Noviose: Investigation of the C-methyltransferase Gene cloU.
Microbiol 2006, 152, 2433−2442.
(7) (a) Zhou, K.; Ludwig, L.; Li, S.-M. Friedel−Crafts Alkylation of
Acylphloroglucinols Catalyzed by a Fungal Indole Prenyltransferase. J.
Nat. Prod. 2015, 78, 929−933. (b) Liebhold, M.; Li, S.-M.
Regiospecific Benzylation of Tryptophan and Derivatives Catalyzed
by a Fungal Dimethylallyl Transferase. Org. Lett. 2013, 15, 5834−
5837. (c) Liebhold, M.; Xie, X.; Li, S.-M. Expansion of Enzymatic
Friedel−Crafts Alkylation on Indoles: Acceptance of Unnatural β-
Unsaturated Allyl Diphospates by Dimethylallyl-tryptophan Syn-
thases. Org. Lett. 2012, 14, 4882−4885. (d) Chen, J.; Morita, H.;
Wakimoto, T.; Mori, T.; Noguchi, H.; Abe, I. Prenylation of a
Nonaromatic Carbon of Indolylbutenone by a Fungal Indole
Prenyltransferase. Org. Lett. 2012, 14, 3080−3083. (e) Yu, X.; Xie,
X.; Li, S.-M. Substrate Promiscuity of Secondary Metabolite Enzymes:
Prenylation of Hydroxynaphthalenes by Fungal Indole Prenyltrans-
ferases. Appl. Microbiol. Biotechnol. 2011, 92, 737−748. (f) Kremer,
A.; Li, S.-M. Potential of a 7-Dimethylallyltryptophan Synthase as a
Tool for Production of Prenylated Indole Derivatives. Appl. Microbiol.
̇
(16) Ządło-Dobrowolska, A.; Schmidt, N. G.; Kroutil, W.
Promiscuous Activity of C-Acyltransferase from Pseudomonas
Protegens: Synthesis of Acetanilides in Aqueous Buffer. Chem.
Commun. 2018, 54, 3387−3390.
̇
(17) Pavkov-Keller, T.; Schmidt, N. G.; Ządło-Dobrowolska, A.;
Kroutil, W.; Gruber, K. Structure and Catalytic Mechanism of a
Bacterial Friedel−Crafts Acylase. ChemBioChem 2019, 20, 88−95.
(18) (a) Secundo, F.; Carrea, G.; Tarabiono, C.; Gatti-Lafranconi,
P.; Brocca, S.; Lotti, M.; Jaeger, K.-E.; Puls, M.; Eggert, T. The Lid is a
Structural and Functional Determinant of Lipase Activity and
Selectivity. J. Mol. Catal. B: Enzym. 2006, 39, 166−170. (b) Johnson,
T. A.; Holyoak, T. The Ω-loop Lid Domain of Phosphoenolpyruvate
Carboxykinase is Essential for Catalytic Function. Biochem 2012, 51,
9547−9559.
̈
Biotechnol. 2008, 79, 951−961. (g) Steffan, N.; Unsold, I. A.; Li, S.-M.
Chemoenzymatic Synthesis of Prenylated Indole Derivatives by Using
a 4-Dimethylallyltryptophan Synthase from Aspergillus fumigatus.
̈
ChemBioChem 2007, 8, 1298−1307. (h) Haagen, Y.; Unsold, I.;
Westrich, L.; Gust, B.; Richard, S. B.; Noel, J. P.; Heide, L. A Soluble,
Magnesium-independent Prenyltransferase Catalyzes Reverse and
Regular C-Prenylations and O-Prenylations of Aromatic Substrates.
FEBS Lett. 2007, 581, 2889−2893. (i) Wessjohann, L.; Sontag, B.
Prenylation of Benzoic Acid Derivatives Catalyzed by a Transferase
from Escherichia coli Overproduction: Method Development and
Substrate Specificity. Angew. Chem., Int. Ed. 1996, 35, 1697−1699.
(8) Zocher, G.; Saleh, O.; Heim, J. B.; Herbst, D. A.; Heide, L.;
Stehle, T. Structure-based Engineering Increased the Catalytic
Turnover Rate of a Novel Phenazine Prenyltransferase. PLoS One
2012, 7, No. e48427.
(19) Khan, F. I.; Lan, D.; Durrani, R.; Huan, W.; Zhao, Z.; Wang, Y.
The Lid Domain in Lipases: Structural and Functional Determinant
of Enzymatic Properties. Front. Biotechnol. Bioeng. 2017, 5, 16.
́
́
́
(20) (a) Olah, M.; Kovacs, D.; Katona, G.; Hornyanszky, G.; Poppe,
L. Optimization of 2-Alkoxyacetates as Acylating Agent for Enzymatic
Kinetic Resolution of Chiral Amines. Tetrahedron 2018, 74, 3663−
3670. (b) Paravidino, M.; Hanefeld, U. Enzymatic Acylation:
Assessing the Greenness of Different Acyl Donors. Green Chem.
2011, 13, 2651−2657. (c) Sun, J.-H.; Dai, R.-J.; Meng, W.-W.; Deng,
Y.-l. Efficient Enzymatic Kinetic Resolution of 2-Heptylamine with a
Highly Active Acyl Donor. Catal. Commun. 2010, 11, 987−991.
(9) Chen, R.; Gao, B.; Liu, X.; Ruan, F.; Zhang, Y.; Lou, J.; Feng, K.;
Wunsch, C.; Li, S.-M.; Dai, J.; Sun, F. Molecular Insights into the
Enzyme Promiscuity of an Aromatic Prenyltransferase. Nat. Chem.
Biol. 2017, 13, 226−234.
́
(d) Gonzalez-Sabín, J.; Gotor, V.; Rebolledo, F. Kinetic Resolution of
̈
̈
(10) Harle, J.; Gunther, S.; Lauinger, B.; Weber, M.; Kammerer, B.;
Zechel, D. L.; Luzhetskyy, A.; Bechthold, A. Rational Design of an
Aryl-C-glycoside Catalyst from a Natural Product O-Glycosyltransfer-
ase. Chem. Biol. 2011, 18, 520−530.
( )-Trans-and ( )-Cis-2-phenylcyclopentanamine by CALB-cata-
lyzed Aminolysis of Esters: the Key Role of the Leaving Group.
Tetrahedron: Asymmetry 2004, 15, 481−488. (e) Wagegg, T.;
Enzelberger, M. M.; Bornscheuer, U. T.; Schmid, R. D. The Use of
1100
ACS Catal. 2020, 10, 1094−1101