10.1002/chem.201801882
Chemistry - A European Journal
FULL PAPER
H, OH), 1.81 (ddd, J = 2.9, 6.0, 14.6 Hz, 1H, 2’-Ha), 1.86-2.00 (m, 3 H, 4-
Hb, 2’-Hb, 3-Ha), 2.02-2.15 (m, 3 H, 4a-H, 8a-H, 8-Hb), 2.22 (d, J = 11.5 Hz,
1 H, 1-Ha), 2.54 (mc, 1 H, 1’-Ha), 2.73 (dd, J = 4.5, 11.0 Hz, 1 H, 5-H), 3.10
(d, J = 11.5 Hz, 1 H, 1-Hb), 3.16 (mc, 1 H, 1’-Hb), 3.32-3.38 (m, 1 H, 3-Hb),
3.49 (s, 3 H, C6-OMe), 3.74 (s, 3 H, CO2Me), 3.76 (s, 3 H, C6’’-OMe), 3.79
(dd, J = 9.5, 11.0 Hz, 1 H, 6-H), 3.88 (s, 3 H, Ar-OMe), 3.89 (s, 6 H, Ar-
OMe), 4.98-5.06 (m, 1 H, 7-H), 6.38 (d, J = 2.2 Hz, 1 H, 7’’-H), 6.51 (dd, J
= 2.2, 8.3 Hz, 1 H, 5’’-H), 7.16 (d, J = 8.3 Hz, 1 H, 4’’-H), 7.28 (s, 2 H, Ar-
H), 7.70 (s, 1 H, NH) ppm. 13C NMR (CDCl3, 100 MHz): δ = 23.3 (t, C4),
29.7 (t, C8), 32.1 (t, C-2‘), , 34.7 (d, C8a), 37.1 (d, C4a), 51.7 (q, CO2Me),
52.1 (d, C5), 53.7 (t, C1‘), 54.5 (t, C3), 55.5 (q, C6’’-OMe), 56.2 (q, Ar-
OMe), 57.9 (t, C1), 60.89 (q, Ar-OMe), 60.92 (q, C6-OMe), 77.2 (s, C3’’),
77.9 (2 d, C6, C7), 97.5 (C7’’), 106.97 (d, Ar), 107.05 (d, C5’’), 124.3 (s,
C3a’’), 124.8 (d, C4’’), 125.2 (s, Ar), 140.9 (s, C7a’’), 142.3 (s, Ar), 152.9
(s, Ar), 160.8 (s, C6’’), 165.5 (s, OCOAr), 172.1 (s, CO2Me), 180.5 (s,
C2’’) ppm. IR: ꢀ = 3310 (OH), 2940, 2840 (C-H), 1715 (C=O), 1630, 1590,
1505, 1250, 1125, 725 cm-1. HRMS (ESI): m/z [M+H]+ calc. for
[C33H43N2O11]+ 643.2861, found 643.2955.
M. U. Rahman, N. K. Nyola, Synth. Commun. 2016, 46, 1643-1664; (c)
B. Yu, D.-Q. Yu, H.-M. Liu, Eur. J. Med. Chem. 2015, 97, 673-698 (d) X.-
H. Zhong, L. Xiao, Q. Wang, B.-J. Zhang, M.-F. Bao, X.-H. Cai, L. Peng,
Phytochem. Lett. 2014, 10, 55-59; (e) Y.-J. Wu, Top. Heterocyclic Chem.
2010, 26, 1-29; (f) S. Peddibhotla, Curr. Bioactive Comp. 2009, 5, 20-38.
(a) G. A. Cordell, Introduction to Alkaloids. A Biogenetic Approach. Wiley-
Interscience, New York 1981, pp. 656-690; (b) R. Ahmad, F. Salim in
Studies in Natural Product Chemistry, Vol. 45, A.-u.-Rahman, Ed.;
Elsevier, Amsterdam 2015, pp. 485-525.
[2]
[3]
(a) M. M. M. Santos, Tetrahedron 2014, 70, 9735-9757; (b) B. M. Trost,
M. K. Brennan, Synthesis 2009, 3003-3025; (c) L. A. Paquette, J. E.
Hofferberth, in Organic Reactions Vol. 62, pp. 477-567, Wiley 2004.; (d)
C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 2209-2219; e) E.
Schendera, S. Lerch, T. von Drathen, L.-N. Unkel, M. Brasholz, Eur. J.
Org. Chem. 2017, 3134-3138.
[4]
[5]
[6]
[7]
M. Kitajima, S. Ohara, Noriyuki Kogure, Y. Wu, R. Zhang, H. Takayama,
Heterocycles 2012, 85, 1949-1959.
X.-F. Cao, J.-S. Wang, X.-B. Wang, J. Luo, H.-Y. Wang, L.-Y. Kong,
Phythochemistry 2013, 96, 389-396.
D. V. C. Awang, B. A. Dawson, M. Girard, A. Vincent, I. Ekiel, J. Org.
Chem. 1990, 55, 4443-4448.
cis-Decahydroisoquinoline 16: N-Alkyl-cis-decahydroisoquinoline 15
(29.5 mg, 45.9 μmol) was dissolved in DCE (2 mL) under N2 and the
solution was cooled to 0 °C. A solution of proton sponge (30.0 mg,
140 μmol, 3.05 eq.) and phenyl chloroformate (11.8 µL, 94.2 μmol,
2.05 eq.) in DCE (3 mL) was added dropwise. The mixture was stirred at
r.t. for 1 h and 2.5 h at 100 °C. The solvent was removed under reduced
pressure, the residue was diluted with water and extracted with EtOAc (3×).
The combined organic layers were washed with cold 1 M HCl (3×), H2O
(3×), brine (3×) and dried over MgSO4. The solvent was removed under
reduced pressure, and the crude mixture was purified by column
chromatography (silica gel, PET/ethyl acetate 1:0→1:1) to give 11.0 mg
(43%) 16 as a colorless film.
Rf = 0.35 (PET/EtOAc 1:1); [α]D = −30.3°, c 0.46, CHCl3. 1H NMR (CDCl3,
600 MHz): δ = 1.36-1.46 (m, 4-Ha), 1.79-1.98 (m, 2 H, 4-Hb, 8-Ha), 2.04-
2.14 (m, 2 H, 8-Hb, 8a-H), 2.23-2.32 (m, 1 H, 4a-H), 2.77 (dd, J = 4.7, 10.8
Hz, 1 H, 5-H), 2.75,* 2.89* (2 t, J = 12.0 Hz, 1 H, 3-Ha), 3.03,* 3.19* (2 d,
J = 12.5 Hz, 1 H, 1-Ha), 3.52 (s, 3 H, CH-OMe), 3.76 (s, 3 H, CO2Me), 3.80-
3.89 (m, 1 H, 6-H), 3.92, 3.93 (2 s, 9 H, Ar-OMe), 4.13-4.25 (m, 1 H, 1-Hb),
4.33-4.46 (m, 1 H, 3-Hb), 5.02-5.13 (m, 1 H, 7-H), 6.99-7.12 (m, 2 H, Ph)
7.14-7.21 (m, 1 H, Ph) 7.27-7.37 (m, 4 H, Ar, Ph) ppm. *Signals marked
show rotamer splitting. 13C NMR (CDCl3, 150 MHz): δ = 22.5 (t, C4), 28.8
(t, C8), 34.4 (d, C8a), 37.2 (d, C4a), 44.3 (t, C3), 48.9 (t, C1), 51.9 (q,
CO2Me), 52.1 (d, C5), 56.3 (q, Ar-OMe), 61.0 (q, Ar-OMe, CH-OMe), 77.5
(d, C7), 77.7 (d, C6), 106.9 (d, Ar), 121.6 (d, Ph), 125.1 (s, Ar), 125.3 (d,
Ph), 129.2 (d, Ph), 142.4 (s, Ar), 151.2 (s, Ph), 153.0 (s, Ar), 154.0 (s,
NCO), 165.4 (s, OCOAr), 171.8 (s, CO2Me) ppm. IR: ꢀ = 2940, 2840 (C-
H), 1710 (C=O), 1590, 1505, 1250, 1210, 725 cm-1. HRMS (ESI): m/z
[M+H]+ calc. for [C29H36NO10]+ 558.2334, found 558.2347.
a) S. Lerch, L.-N. Unkel, P. Wienefeld, M. Brasholz, Synlett 2014, 2673-
2680; b) S. Lerch, L.-N. Unkel, M. Brasholz, Angew. Chem. Int. Ed. 2014,
53, 6558-6562; c) F. Rusch, L.-N. Unkel, D. Alpers, F. Hoffmann, M.
Brasholz, Chem. Eur. J. 2015, 21, 8336-8340.
[8]
a) J. Bayer, Pharmazie 1958, 13, 468-469; b) S. Ljungberg, J. Pharm.
Belg. 1959, 14, 115-125; c) G. E. Wright, T. Y. Tang, J. Pharmaceut. Sci.
1972, 61, 299-300; d) N. Jamil, H. Afrozrizvi, I. Ahmed, A. E. Beg,
Pharmazie 1983, 38, 467-469; e) M. A. Muñoz, D. González-Arjona, M.
Balón, J. Chem. Soc., Perkin Trans. 2 1991, 453-456.
[9]
The crystal structure data can be retrieved from the Cambridge
[10] a) R. A. Olofson, R. C. Schnur, L. Bunes, J. P. Pepe, Tetrahedron Lett.
1977, 18, 1567-1570; b) D. M. Zimmerman, B. E. Cantrell, J. K. Reel, S.
K. Hemrick-Luecke, R. W. Fuller, J. Med. Chem. 1986, 29, 1517-1520.
[11] Reserpine (5) shows two pH-dependent irreversible oxidations in cyclic
(1)
voltammetry, Eox at +0.6 to 0.8 V vs. SCE (in organic solvent/H2O
mixtures) corresponding to one-electron oxidation of the indole nucleus
(2)
and Eox at around +1.40 V being the oxidation of its tertiary amine
nitrogen atom, see: a) J. A. Fournier, A. B. Wolk, M. A. Johnson, Anal.
Chem. 2013, 85, 7339-7344; b) D. M. Stanković, E. Mehmeti, L. Svorc,
K. Kalcher, Int. J. Electrochem. Sci. 2015, 10 1469-1477; values
converted to SCE scale. For excited catalyst 3C*, E*red can be estimated
around +0.8 V, see: c) J. Ritter, H.-U. Borst, T. Lindner, M. Hauser, S.
Brosig, K. Bredereck, U. E. Steiner, D. Kühn, J. Kelemen, H. E. A. Kramer,
J. Photochem. Photobiol. A: Chem. 1988, 41, 227-244. Hence,
photoelectron transfer between 3C* and the indole nucleus of 5 is
principally possible, but Eox(2) of the tertiary amine nitrogen is too high for
PET to occur with 3C*.
[12] B. Savory, J. H. Turnbull, J. Photochem. 1983, 23, 171-181.
[13] a) I. M. Byteva, G. P. Gurinovich, O. L. Golomb, V. V. Karpov, Zh. Prikl.
Spektrosk. 1986, 44, 589-593; b) K. Gollnick, S. Held, D. O. Mártire, S.
E. Braslavsky, J. Photochem. Photobiol. A: Chem. 1992, 69, 155-165.
[14] a) K. Hamanoue, T. Nakayama, A. Tanaka, Y. Kajiwara, H. Teranishi, J.
Photochem. 1986, 34, 73-81; b) H. Pal, D. Palit, T. Mukherjee, J. P. Mittal,
J. Photochem. Photobiol. A: Chem. 1991, 62, 183-193; c) S. Kamijo, G.
Takao, K. Kamijo, T. Tsuno, K. Ishiguro, T. Murafuji, Org. Lett. 2016, 18,
4912-15; d) T. Yamaguchi, Y. Kudo, S.-I. Hirashima, E. Yamaguchi, N.
Tada, T. Miura, A. Itoh, Tetrahedron Lett. 2015, 56, 1973-1975; e) T.
Yamaguchi, E. Yamaguchi, A. Itoh, Org. Lett. 2017, 19, 1282-1285.
[15] Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC
Press, Boca Raton, 2007.
Acknowledgements
The authors thank the Deutsche Forschungsgemeinschaft (DFG
grant no. BR3748/2-1) for financial support of this research.
Keywords: alkaloids • indoles • photooxygenation • rearrange-
ments
[16] L.-H. Zhang, A. K. Gupta, J. M. Cook, J. Org. Chem. 1989, 54, 4708-
4712.
[1]
Reviews: (a) M. Kaur, M. Singh, N. Chadha, O. Silakari, Eur. J. Med.
Chem. 2016, 123, 858-894; (b) P. Saraswat, G. Jeybalan, M. Z. Hassan,
This article is protected by copyright. All rights reserved.