NMR (chloroform-d): 3.15 (s, 4H, CH2), 7.20 (d, 2H, 3J(H,H) =
7.6 Hz, H2C–C–CH ), 7.34 (td, 2H, 3J(H,H) = 7.6 Hz, 4J(H,H) =
1.2 Hz, H2C–C–CH–CH ), 7.47 (td, 2H, 3J(H,H) = 7.6 Hz,
References
1 H. E. Katz, J. Org. Chem., 1989, 54, 2179–2183.
2 K. Nozaki, T. Tsutsumi and H. Takaya, J. Org. Chem., 1995, 60,
6668–6669.
3
4J(H,H) = 1.6 Hz, BC–CH–CH ), 8.53 (dd, 2H, J(H,H) = 7.6
4
Hz, J(H,H) = 1.2 Hz, BC–CH ). 13C NMR (chloroform-d):
3 H. E. Katz, J. Org. Chem., 1985, 50, 5027–5032.
36.96 (2C, CH2), 125.9, 128.7, 133.7, 140.9 (8C, CH), 150.3
(2C, CH2–C), 138.4 (br, 2C, B–C). 11B NMR (chloroform-d):
68.6.
4 L. Jia, X. Yang, C. Stern and T. J. Marks, Organometallics, 1994, 13,
3755–3757; M. V. Metz, D. J. Schwartz, C. L. Stern, P. N. Nickias
and T. J. Marks, Angew. Chem., Int. Ed. Engl., 2000, 39, 1312–1316;
E. Y.-X Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391–1434.
5 K. Köhler, W. E. Piers, A. P. Jarvis, S. Xin, Y. Feng, A. M. Bravakis,
S. Collins, W. Clegg, G. P. A. Yap and T. B. Marder, Organometallics,
1998, 17, 3557–3566; V. C. Williams, W. E. Piers, W. Clegg, M. R. J.
Elsegood, S. Collins and T. B. Marder, J. Am. Chem. Soc., 1999, 121,
3244–3245; V. C. Williams, C. Dai., Z. Li, S. Collins, W. E. Piers,
W. Clegg, M. R. J. Elsegood and T. B. Marder, Angew. Chem., Int.
Ed., 1999, 38, 3695–3698; W. E. Piers, G. J. Irvine and V. C. Williams,
Eur. J. Inorg. Chem., 2000, 2131–2142; V. C. Williams, G. J. Irvine,
W. E. Piers, Z. Li, S. Collins, W. Clegg, M. R. J. Elsegood and
T. B. Marder, Organometallics, 2000, 19, 1619–1621.
6 M. Reilly and T. Oh, Tetrahedron Lett., 1995, 35, 7209–7212;
M. Reilly and T. Oh, Tetrahedron Lett., 1995, 36, 221–224.
7 B. Schilling, V. Kaiser and D. Kaufmann, Chem. Ber., 1997, 130,
923–932.
8 J. D. Hoefelmeyer, M. Schulte, M. Tschinkl and F. P. Gabbaï, Coord.
Chem. Rev., 2002, 235, 93–103.
9 F. P. Gabbaï, Angew. Chem., Int. Ed., 2003, 42, 2218–2221.
10 J. D. Hoefelmeyer and F. P. Gabbaï, J. Am. Chem. Soc., 2000, 122,
9054–9055.
11 A. Hergel, H. Pritzkow and W. Siebert, Angew. Chem., Int. Ed. Engl.,
1994, 33, 1247–1248.
12 J. D. Hoefelmeyer and F. P. Gabbaï, Organometallics, 2002, 21,
982–985.
13 M. Schulte and F. P. Gabbaï, Chem. Eur. J., 2002, 8, 3802–3807.
14 A. F. Cunningham, M. Kunz, K. Hisatoshi, (Ciba Specialty
Chemicals Corporation, USA) US 5952152, 1999.
15 M. K. Rathke and R. J. Kow, J. Am. Chem. Soc., 1972, 94, 6854–
6856; R. J. Kow and M. W. Rathke, J. Am. Chem. Soc., 1973, 95,
2715–2716; J. W. Wilson, J. Organomet. Chem., 1980, 186, 297–300.
16 M. M. Olmstead, P. P. Power and K. Weese, J. Am. Chem. Soc., 1987,
109, 2541–2542.
17 H. Klusik and A. Berndt, Angew. Chem., 1983, 95, 895–896;
C. Wieczorek, J. Allwohn, G. Schmidt-Lukasch, R. Hunold,
W. Massa and A. Berndt, Angew. Chem., 1990, 102, 435–436.
18 R. A. Bartlett and P. P. Power, Organometallics, 1986, 5, 1916–1917.
19 K. S. Cook, W. E. Piers, T. K. Woo, S. J. Rettig and R. McDonald,
Organometallics, 2001, 20, 3927–3937.
20 C. K. Narula and H. Nöth, J. Organomet. Chem., 1985, 281, 131–134.
21 R. Corriu, G. Lanneau, C. Priou, F. Soulairol, N. Auner, R. Probst,
R. Conlin and C. Tan, J. Organomet. Chem., 1994, 466, 55–68.
22 (a) J. J. Eisch, J. E. Galle and S. Kozima, J. Am. Chem. Soc., 1986,
108, 379–385; G. E. Herberich, G. Buller, B. Hessner and
W. Oschmann, J. Organomet. Chem., 1980, 195, 253–259.
23 P. A. Chase, W. E. Piers and B. O. Patrick, J. Am. Chem. Soc., 2000,
122, 12911–12912.
24 E. Krause and H. Polack, Ber. Dtsch. Chem. Ges., 1926, 59, 777–785;
T. L. Chu and T. J. Weissman, J. Am. Chem. Soc., 1956, 78, 23–26;
J. E. Leffler, G. B. Watts, T. Tanigaki, E. Dolan and D. S. Miller,
J. Am. Chem. Soc., 1970, 92, 6825–6830; M. S. Olmstead and
P. P. Power, J. Am. Chem. Soc., 1986, 108, 4235–4236; J. J. Eisch,
T. Dluzniewski and M. Behrooz, Heteroat. Chem., 1993, 4, 235–241;
C. J. Harlan, T. Hascall, E. Fujita and J. R. Norton, J. Am. Chem.
Soc., 1999, 121, 7274–7275; H. C. Brown and V. H. Dodson, J. Am.
Chem. Soc., 1957, 79, 2302–2306; S. I. Weissman and H. van
Willigen, J. Am. Chem. Soc., 1965, 87, 2285–2286; C. Elschenbroich,
P. Kuhlkamp, A. Behrendt and H. K. Harms, Chem. Ber., 1996,
129, 859–869; R. J. Kwaan, C. J. Harlan and J. R. Norton,
Organometallics, 2001, 20, 3818–3820.
Synthesis of diborane 5
A
solution of 5-bromo-10,11-dihydrodibenzo[b,f]borepin
(0.15 g, 0.54 mmol) in diethyl ether (10 mL) was added to a
suspension of freshly isolated 1-Li(THF)4 (0.30 g, 0.45 mmol)
in diethyl ether (10 mL) at 25 ЊC. The mixture was stirred for 2 h
at room temperature and the solution was filtered. The solvent
was removed under vacuum and the resulting solid was
extracted with dichloromethane (20 mL). Following filtration
and evaporation of the solvent, the beige solid was washed with
ethanol (2 × 20 mL) and dried under vacuum. The product was
recrystallized from a dichloromethane–hexane mixture. Yield:
89 mg, 35%; mp 327 ЊC (decomp.). Large monocrystals could
be obtained by slow evaporation of a diethyl ether solution.
1H NMR (chloroform-d): 1.21 (s, 3H, Mes-CH3), 1.31 (s, 3H,
Mes-CH3), 1.48 (s, 3H, Mes-CH3), 1.57 (s, 3H, Mes-CH3), 1.76
(s, 3H, Mes-CH3), 2.19 (s, 3H, Mes-CH3), 2.88 (m, 1H, CH(H)),
2.95 (m, 2H, CH2), 3.44 (m, 1H, CH(H )), 6.14 (s, 1H,
Mes-CH ), 6.27 (s, 1H, Mes-CH ), 6.46 (d, 1H, 3J(HH) = 6.8 Hz,
3
CH ), 6.59 (s, 2H, Mes-CH ), 6.73 (td, 1H, J(HH) = 7.6 Hz,
3
4J(HH) = 1.2 Hz, CH ), 6.85 (t, 1H, J(HH) = 7.6 Hz, CH ),
3
6.94 (d, 1H, J(HH) = 7.2 Hz, CH ), 7.10–7.24 (m, 5H, CH ),
3
4
7.40 (m, 2H, CH ), 7.75 (dd, 1H, J(HH) = 7.2 Hz, J(HH) =
1.6 Hz, CH ), 7.94 (dd, 1H, 3J(HH) = 8.0 Hz, 4J(HH) = 1.6 Hz,
3
4
CH ), 8.09 (dd, 1H, J(HH) = 8.0 Hz, J(HH) = 1.6 Hz, CH ).
13C NMR (chloroform-d): 20.86, 21.03, 22.32, 23.34, 23.64,
24.61 (6C, Mes-CH3), 36.87, 37.77 (2C, CH2), 123.6, 124.0,
125.4, 125.6, 127.3, 127.7, 127.8, 128.2, 128.8, 130.2,
130.7, 130.8, 132.1, 134.5, 135.3, 138.9, 144.7, 144.9 (18C, CH),
133.8, 137.7, 139.8, 140.8, 141.1, 141.1, 141.5, 142.9, 152.3,
154.4 (10C, C–C), 137.7, 139.1, 149.1, 149.5, (4C, B–C).
Two B–C not observed. 11B NMR (chloroform-d): 72.2 (br,
2B).
Electrochemistry
Electrochemical experiments were performed with an electro-
chemical analyzer from CH Instruments (Model 610A) with a
glassy-carbon working electrode and a platinum auxiliary elec-
trode at a scan rate of 100 mV sϪ1. The reference electrode was
built from a silver wire inserted a small glass tube fitted with a
porous Vycor frit at the tip and filled with a CH3CN solution
containing (nBu)4NPF6 (0.1 M) and AgNO3 (0.005 M). All
three electrodes were immersed in a THF solution (8 mL) con-
taining (nBu)4NPF6 (0.1 M) as a support electrolyte and the
borane (0.003 M). The electrolyte was dried under vacuum
prior to use. In all cases, ferrocene was used as an internal
standard, and all reduction potentials are reported with respect
to the E1/2 of the Fcϩ/Fc redox couple.
25 D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller,
D. Bourissou and G. Bertrand, Science, 2002, 295, 1880–1881.
26 P. E. Romero, W. E. Piers, S. A. Decker, D. Chau, T. K. Woo and
M. Parvez, Organometallics, 2003, 22, 1266–1274.
27 W. J. Grigsby and P. P. Power, J. Am. Chem. Soc., 1996, 118,
7981–7988.
28 (a) R. J. Wehmschulte, M. A. Khan, B. Twamley and B. Schiemenz,
Organometallics, 2001, 20, 844–849; (b) R. J. Wehmschulte, A. A.
Diaz and M. A. Khan, Organometallics, 2003, 22, 83–92.
29 S. Warren and P. Wyatt, J. Chem. Soc., Perkin Trans. 1, 1998,
249–255.
Acknowledgements
Support from the Welch Foundation (Grant A-1423), the
National Science Foundation (CAREER CHE-0094264) and
the Department of Chemistry at Texas A&M University, is
gratefully acknowledged. The purchase of the X-ray diffract-
ometer was made possible by a grant from the National Science
Foundation (CHE-9807975). Finally, we thank the referees for
their constructive comments.
D a l t o n T r a n s . , 2 0 0 4 , 1 2 5 4 – 1 2 5 8
1258