derivatives 1 with electrophiles (E+), typically strong
acids or organoselenium-based electrophiles, leads to the
formation of the kinetic exo-substituted hexahydropyr-
rolindole 2, which rapidly equilibrates to the endo-isomer
3.4,18,20,22 Irreversible cyclizations, typically those medi-
ated by oxygen-based electrophiles,8,21,23,24 give mixtures
of exo- and endo-substituted hexahydropyrroloindoles.8,21
Deprotonation of 4, a stabilized form of 3, and alkylation
of the resultant enolate takes place with retention of
configuration, i.e., with high kinetic selectivity for the
exo-face.10 Conjugate additions, and cycloadditions to the
tetrahydro system 5, likewise take place with excellent
exo-face selectivity.13 Generation of radical 6 and quench-
ing with a variety of traps, however, results in prefer-
ential formation of the endo-trapped product, with endo-
selectivity increasing with the size of the trap.19
En d o-Selective Qu en ch in g of
Hexa h yd r op yr r olo[2,3-b]in d ole-Ba sed
N-Acylim in iu m Ion s
Rosa L. Meza-Leo´n,‡ David Crich,† Sylvain Berne`s,‡ and
Leticia Quintero*,‡
Department of Chemistry, University of Illinois at Chicago,
845 West Taylor Street, Chicago, Illinois 60607-7061, and
Centro de Investigacio´n de la Facultad de Ciencias
Quı´micas and Centro de Qu´ımica del Instituto de Ciencias,
Universidad Auto´noma de Puebla, 72570 Puebla,
Puebla, Me´xico
lquinter@siu.buap.mx.
Received February 11, 2004
Abstr a ct: Radical decarboxylation of L-tryptophan-derived
(2S,3aR,8aS)-8-arylsulfonyl-1,2-di(methoxycarbonyl)-1,2,3,-
3a,8,8a-hexahydro-2H-pyrrolo[2,3-b]indoles 8 and 9 in the
presence of diphenyl diselenide results in the endo-selective
formation of (2R,3aR,8aS)-8-arylsulfonyl-1-methoxycarbo-
nyl-2-phenylselenyl-1,2,3,3a,8,8a-hexahydro-2H-pyrrolo[2,3-
b]indoles 10 and 11. These selenides, in conjunction with
Lewis acids, serves as precursors to the corresponding N-acyl
iminium ions, which undego selective endo-face quenching
by allyltributylstannane, allyltrimethylsilane, propargyl-
trimethylsilane, and trimethylsilylcyanide. Stereochemical
assignments rest on NMR data and crystallographic studies.
The endo-selective nature of these reactions is interpreted
in terms of minimization of allylic strain at the transition
state for nucleophilic attack on the N-acyl iminum ion.
This background, together with the generally useful
chemistry of N-acyl iminium ions25 and the current
interest in the endo-face selective quenching of related
fused bicyclic five-membered oxocarbenium ions,26
prompted a study of the generation and trapping of
cationic species 7 at the 2-position of the hexahydropy-
rrolo[2,3-b]indole framework which we report here.
The chemistry of the 2-substituted hexahydropyrrolo-
[2,3-b]indole tautomers 2 and 3 of tryptophan continues
to be of considerable importance owing (i) to the applica-
tion of this system in the synthesis of numerous alkaloids
of diverse biological activity,1-8 (ii) to their use as
templates for the stereocontrolled formation of tryp-
tophan analogues,9-15 and (iii) the intriguing enigma of
the kinetic and thermodymanic stereoselectivity at the
2-position.16-21 With respect to the question of stereo-
selectivity at the 2-position, treatment of tryptophan
† University of Illinois at Chicago.
‡ Universidad Auto´noma de Puebla.
(11) Crich, D.; Pastrana-Grass, I.; Quintero-Cortes, L.; Sandoval-
Ramirez, J . Heterocycles 1994, 38, 719-724.
(1) Bruncko, M.; Crich, D.; Samy, R. J . Org. Chem. 1994, 59, 5543-
5549.
(2) Crich, D.; Pavlovic, A. B.; Samy, R. Tetrahedron 1995, 51, 6379-
6384.
(3) Crich, D.; Fredette, E.; Flosi, W. J . Heterocycles 1998, 48, 545-
547.
(12) Crich, D.; Lim, L. B. L. Heterocycles 1993, 36, 1199-1204.
(13) Bruncko, M.; Crich, D. J . Org. Chem. 1994, 59, 4239-4249.
(14) Dua, R. K.; Phillips, R. S. Tetrahedron Lett. 1992, 33, 29-32.
(15) Burgaud, B. G. M.; Horwell, D. C.; Pritchard, M. C.; Bernad,
N.; Martinez, J . Tetrahedron: Asymmetry 1995, 6, 1081-1084.
(16) Crich, D.; Chan, C.-O.; Davies, J . W.; Natarajan, S.; Vinter, J .
G. J . Chem. Soc., Perkin Trans. 2 1992, 2233-2240.
(17) Crich, D.; Bruncko, M.; Natarajan, S.; Teo, B. K.; Tocher, D. A.
Tetrahedron 1995, 51, 2215-2228.
(4) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.;
Bornmann, W. G.; Danishefsky, S. J . J . Am. Chem. Soc. 1999, 121,
11953-11963.
(5) Kamanecka, T. A.; Danishefsky, S. J . Angew. Chem., Int. Ed.
1998, 37, 2995-2998.
(18) Crich, D.; Huang, X. J . Org. Chem. 1999, 64, 7218-7223.
(19) Crich, D.; Natarajan, S. J . Org. Chem. 1995, 60, 6237-6241.
(20) Ley, S. V.; Cleator, E.; Hewitt, P. R. Org. Biomol. Chem. 2003,
3492-3494.
(6) Chen, W.-C.; J oullie´, M. M. Tetrahedron Lett. 1998, 39, 8401-
8404.
(7) Schiavi, B. M.; Richard, D. J .; J oullie´, M. M. J . Org. Chem. 2002,
67, 620-624.
(21) Kamenecka, T. M.; Danishefsky, S. J . Chem. Eur. J . 2001, 7,
41-63.
(8) Baran, P. S.; Guerrero, C. A.; Corey, E. J . J . Am. Chem. Soc.
2003, 125, 5628-5629.
(22) Taniguchi, M.; Hino, T. Tetrahedron 1981, 37, 1487-1494.
(23) Hino, T.; Nakagawa, M. In Alkaloids; Brossi, A., Ed.; Academic
Press: New York, 1988; Vol. 34, pp 1-75.
(9) Crich, D.; Davies, J . W. J . Chem. Soc., Chem. Commun. 1989,
1418-1419.
(10) Bourne, G. T.; Crich, D.; Davies, J . W.; Horwell, D. C. J . Chem.
Soc., Perkin Trans. 1 1991, 1693-1699.
(24) Saito, I.; Matsuura, T.; Nakagawa, M.; Hino, T. Acc. Chem. Res.
1977, 10, 346-352.
10.1021/jo049757p CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/24/2004
3976
J . Org. Chem. 2004, 69, 3976-3978