1 R. J. Ferrier and S. Middleton, Chem. Rev., 1993, 93, 2779; R. J. Ferrier
and S. Middleton, Top. Curr. Chem., 2001, 215, 277.
2 For recent application of Ferrier’s carbocyclisation reaction to natural
product synthesis, see (a) S. Imuta, S. Ochiai, M. Kuribayashi and N.
Chida, Tetrahedron Lett., 2003, 44, 5047; (b) T. Momose, M. Setoguchi,
T. Fujita, H. Tamura and N. Chida, Chem. Commun., 2000, 2237; (c) S.
Amano, N. Ogawa, M. Ohtsuka and N. Chida, Tetrahedron, 1999, 55,
2205; S. Amano, N. Takemura, M. Ohtsuka, S. Ogawa and N. Chida,
Tetrahedron, 1999, 55, 3855; H. Takahashi, H. Kittaka and S. Ikegami,
J. Org. Chem., 2001, 66, 2705; C. Taillefumier and Y. Chapleur, Can.
J. Chem., 2000, 78, 708.
3 Isolation of (+)-vittatine, see (a) H.-G. Boit, Chem. Ber., 1956, 89, 1129;
(b) H.-G. Boit and H. Ehmke, Chem. Ber., 1957, 90, 369; (c) Y. Uyeo,
K. Kotera, T. Okada, S. Takagi and Y. Tsuda, Chem. Pharm. Bull.,
1966, 14, 793.
4 S. F. Martin, in The Alkaloids, ed. A. Brossi, Academic Press, New
York, 1987, vol. 30, p. 251; O. Hoshino, in The Alkaloids, ed. G. A.
Cordell, Academic Press, New York, 1998, vol. 51, p. 323; J. R. Lewis,
Nat. Prod. Rep., 1998, 15, 107.
5 For total synthesis of racemic crinine, see (a) H. Muxfeldt, R. S.
Schneider and J. B. Mooberry, J. Am. Chem. Soc., 1966, 88, 3670; H. W.
Whitelock Jr. and G. L. Smith, J. Am. Chem. Soc., 1967, 89, 3600; L. E.
Overman, L. T. Mandelson and E. F. Jacobsen, J. Am. Chem. Soc., 1983,
105, 6629; (b) S. F. Martin and C. L. Campbell, Tetrahedron Lett., 1987,
28, 503; S. F. Martin and C. L. Campbell, J. Org. Chem., 1988, 53, 3184;
(c) W. H. Pearson and F. E. Lovering, J. Org. Chem., 1998, 63, 3607.
For synthetic efforts towards crinine and the crinan class of alkaloids,
see ref. 4.
6 For total synthesis of (2)-crinine, see L. E. Overman and S. Sugai, Helv.
Chim. Acta, 1985, 68, 745. (+)-Maritidine, see Y. Kita, T. Takeda, M.
Gyoten, H. Tohma, M. H. Zenk and J. Eichhorn, J. Org. Chem., 1991,
61, 5857. (2)-Amabiline and (2)-augustamine, see ref. 5(c). (+)-Crina-
mine, (2)-haemanthidine and (+)-pretazettine, see T. Nishimata and M.
Mori, J. Org. Chem., 1998, 63, 7586; T. Nishimata, Y. Sato and M.
Mori, J. Org. Chem., 2004, 69, 1837. (2)-Haemanthidine, (+)-pre-
tazettine and (+)-tazettine, see S. W. Baldwin and J. S. Debenham, Org.
Lett., 2000, 2, 99.
Scheme 2 Ts = –C6H4(p-Me), Boc = –C(O)OCMe3. Reagents and
conditions: i DIBAL-H, toluene, 278 °C; ii NH(Ts)Boc, PPh3, diethyl
azodicarboxylate. THF, rt; iii Na–naphthalene, THF, 240 °C, 90 min; iv
Hg(OCOCF3)2, THF, rt, then NaBH4, 0.5 M aq. NaOH–MeOH, rt; v NaH,
CS2, MeI, THF, then 1,2-dichlorobenzene, K2CO3, MS4A, 160 °C; vi
BF3·OEt2, MS4A, CH2Cl2, rt; vii formalin, 6 M aq. HCl–MeOH, 50 °C.
In summary, transformation of a readily available carbohydrate,
D-glucose, into the representative Amaryllidaceae alkaloid, (+)-vit-
tatine 1, has been achieved. This is the first asymmetric synthesis of
1 and further study on synthesis of structurally more complex
alkaloids in this class such as haemanthidine and tazettine based on
the same strategy is under investigation in our laboratory.
7 E. Vis and P. Karrer, Helv. Chim. Acta, 1954, 46, 378.
8 N. Chida, M. Ohtsuka, K. Ogura and S. Ogawa, Bull. Chem. Soc. Jpn.,
1991, 64, 2118.
9 A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
10 (a) S. Kano, T. Yokoyama, Y. Yuasa and S. Shibuya, Chem. Lett., 1982,
1915; H. F. Strauss and A. Wiechers, Tetrahedron Lett., 1979, 4495; H.
Fujioka, H. Annoura, K. Murano, Y. Kita and Y. Tamura, Chem. Pharm.
Bull., 1989, 37, 2047; S. Bauermeister, I. D. Gouws, H. F. Strauss and
E. M. M. Venter, J. Chem. Soc., Perkin Trans. 1, 1991, 561; (b) N.
Chida, K. Sugihara and S. Ogawa, J. Chem. Soc., Chem. Commun.,
1994, 901; N. Chida, K. Sugihara, S. Amano and S. Ogawa, J. Chem.
Soc., Perkin Trans. 1, 1997, 275.
11 J. R. Henry, L. R. Marcin, M. C. McIntosh, P. M. Scola, G. D. Harris Jr.
and S. M. Weinreb, Tetrahedron Lett., 1989, 30, 5709.
12 O. Yamada and K. Ogasawara, Org. Lett., 2000, 2, 2785.
13 Y. Saitoh, Y. Moriyama, H. Hirota, T. Takahashi and Q. Khuong-Huu,
Bull. Chem. Soc. Jpn., 1981, 54, 488.
Notes and references
‡ Cyclohexenone 3 was used as the key intermediate for our total synthesis
of (2)-actinobolin. See ref. 2(a).
§ Similar aminomercuration gave no cyclised product when the correspond-
ing amine (with no Boc group) was employed as the substrate.
¶ In the 1H and 13C NMR of vittatine in CDCl3 (treated with alumina prior
to measuring to remove residual DCl), chemical shifts of some signals were
found to vary significantly by the concentration of the sample. Such
concentration dependence was not observed when spectra were measured in
pyridine-d5.
C h e m . C o m m u n . , 2 0 0 4 , 1 0 8 6 – 1 0 8 7
1087