p-Cresol As a ReVersible Acylium Ion ScaVenger
J. Am. Chem. Soc., Vol. 120, No. 7, 1998 1419
benzyl)-OH, and Boc-Thr(O-benzyl)-OH. Each residue was coupled
for 10 min, and coupling efficiencies determined by the quantitative
ninhydrin reaction.55 The average yield of chain assembly was 99.75%
for LTEN and 99.85% for MRP14(89-114). Before HF cleavage, the
dinitrophenyl groups were removed by thiolysis (20% â-mercapto-
ethanol, 10% DIEA, and 70% DMF; 2 × 2 h) prior to N-terminal Boc
deprotection with 100% TFA. The resin was then washed with DCM
and dried under nitrogen.
1.10 (m, 2H, CH2); 13C NMR (75 MHz, CD3OD, ppm) δ 142.43,
139.07, 131.92, 131.37, 79.14, 42.52, 42.20, 30.04, 28.79, 27.41, 22.88;
ES-MS Mr 467.0, calcd for C27H33NS3, 467.2 (monoisotopic).
1,1-Bis(4-methylphenyl)sulfanyl-6-aminohex-1-ene (8): 1H NMR
(300 MHz, CD3OD, ppm) δ 7.12 (s, 4H, H-ar), 7.09 (s, 4H, H-ar),
6.17 (t, J ) 6.5 Hz, 1H, H-CdC), 2.91 (m, 2H, CH2-N), 2.46 (m, 2H,
CH2-CdN), 2.31 (s, 3H, CH3), 2,30 (s, 3H, CH3), 1.66 (m, 2H, CH2),
1.50 (m, 2H, CH2); 13C NMR (75 MHz, DMSO-d6, ppm) δ 142.78
(CH), 137.43 (C), 136.58 (C), 131.36 (CH), 129.95 (CH), 129.82 (CH),
129.78 (CH), 129.00 (C), 38.56 (CH2), 30.24 (CH2), 26.66 (CH2), 25.31
(CH2), 20.72 (CH3), 20.64 (CH3); ES-MS Mr 343.1, calcd for C20H25-
NS2, 343.1 (monoisotopic).
HF Cleavage. Peptide resin (300 mg) was treated at the given
temperature with 10 mL of HF/p-cresol (9:1 (v/v)), HF/p-thiocresol
(9:1 (v/v)), or HF/p-cresol/p-thiocresol (18:1:1 (v/v)). After evaporation
of the HF, the crude product was precipitated and washed with cold
diethyl ether (2 × 10 mL), dissolved in 20% aqueous acetic acid (5
mL), and lyophilized after aqueous dilution.
Arginine-6-aminocaproic acid 4′-methylphenyl ester, TFA salt
1
(9a): H NMR (300 MHz, CD3OD, ppm) δ 6.95 (d, 2H, H-ar), 6.76
1
4-Aminobutanoic acid 4′-methylphenyl ester, TFA salt (2a): H
(d, 2H, H-ar), 3.77 (t, 1H, CR), 3.16 (m, 3H, CH2), 3.04 (m, 3H, CH2),
2.42 (t, 2H, CH2), 2.13 (m, 2H, CH3), 1.72 (m, 4H, CH2), 0.47 (m, 2H,
CH2); 13C NMR (75 MHz, CD3OD, ppm) δ 173.52 (CdO), 170.00
(CdO), 158.71 (C-ar), 149.96 (C-ar), 136.70 (C-ar), 130.83 (C-ar),
122.36 (C-ar), 54.11 (CH), 41.68 (CH2), 39.97 (CH2), 39.74 (CH2),
32.17 (CH2), 29.17 (CH2), 25.63 (CH2), 25.56 (CH2), 25.39 (CH2), 20.84
(CH3); ES-MS Mr 377.2, calcd for C19H31N5O3, 377.2 (monoisotopic).
NMR (300 MHz, CD3OD, ppm) δ 7.19 (d, J ) 8.5 Hz, 2H, H-ar),
6.95 (d, J ) 8.5 Hz, 2H, H-ar), 3.05 (t, J ) 7.8 Hz, 2H, CH2-N), 2.73
(t, J ) 7.1 Hz, 2H, CH2 -CdO), 2.33 (s, 3H, CH3), 2.04 (m(5), 2H,
CH2); 13C NMR (75 MHz, CD3OD, ppm) δ 173.03 (CdO), 150.04
(C-i-ar), 136.93 (C-p-ar), 131.00 (C-m-ar), 122.44 (C-o-ar), 40.09
(CH2-N), 31.77 (CH2-CO), 23.84 (CH2), 20.99 (CH3); ES-MS Mr
193.1, calcd for C11H15NO2, 193.1 (monoisotopic).
6-Aminohexanoic acid 4′-methylphenyl ester, TFA salt (2b): 1H
NMR (300 MHz, CD3OD, ppm) δ 7.18 (d, J ) 8.7 Hz, 2H, H-ar),
6.93 (d, J ) 8.5 Hz, 2H, H-ar), 2.94 (t, J ) 7.8 Hz, 2H, CH2-N), 2.60
(t, J ) 7.1 Hz, 2H, CH2 -CdO), 2.32 (s, 3H, CH3), 1.74 (m(7), 4H,
2 × CH2), 1.51 (m, 2H, CH2); 13C NMR (75 MHz, CD3OD, ppm) δ
173.87 (CdO), 150.00 (C-i-ar), 136.69 (C-p-ar), 130.85 (C-m-ar),
122.34 (C-o-ar), 40.56 (CH2-N), 34.61 (CH2-CO), 28.29 (CH2), 26.86
(CH2), 25.34 (CH2), 20.84 (CH3), ES-MS Mr 221.1, calcd for C13H19-
NO2, 221.1 (monoisotopic).
Arginine-6-aminocaprothioic acid S-4′-methylphenyl ester, TFA
1
salt (9b): H NMR (300 MHz, CD3OD, ppm) δ 7.07 (s, 4H, H-ar),
3.75 (t, 1H, CR), 3.11 (m, 4H, CH2), 3.02 (m, 2H, CH2), 2.53 (t, 2H,
CH2), 2.16 (s, 3H, CH3), 1.68 (m, 4H, CH2), 1.48 (m, 2H, CH2); 13C
NMR (75 MHz, CD3OD, ppm) δ 199.07(CdS), 169.92 (CdO), 158.71
(Cꢀ), 141.07 (C-ar), 135.61 (C-ar), 130.98 (C-ar), 125.50 (C-ar), 54.08
(CR), 41.69 (CH2), 41.44 (CH2), 39.75 (CH2), 29.69 (CH2), 26.09 (CH2),
25.39 (CH2), 21.27 (CH3); ES-MS Mr 393.1, calcd for C19H31N5O2S,
393.2 (monoisotopic).
Comparison of Hydrolysis Rates of 9a and 9b. Fifty microliters
of a 10 mg/mL solution of the ester in water was diluted with 450 µL
of a pH 9.2 buffer (Na2CO3/NaHCO3), and 12.5 µL of an 0.3%
hydrogen peroxide solution in water was immediately added. Aliquots
of 50 µL were taken out after specific time intervals (1, 2, 4, and 8
min), and the hydrolysis was quenched with 100 µL of 0.1 M HCl.
The solutions were then analyzed by RP-HPLC.
6-Amino-1-(5′-methyl-2′-hydroxyphenyl)hexan-1-one, TFA salt
(4b): 13C NMR (75 MHz, CD3OD, ppm) δ 207.98 (CdO), 161.22 (C-
ar), 138.31 (C-ar), 131.09 (C-ar), 129.56 (C-ar), 120.40 (C-ar), 118.85
(C-ar), 38.80 (CH2-N), 34.60 (CH2-CdN), 28.43 (CH2), 27.03 (CH2),
24.65 (CH2); ES-MS Mr 221.1, calcd for C13H19NO2, 221.1 (monoiso-
topic).
2-(4,5′-Dihydro-3H-pyrrol-2′-yl)-4′-methylphenol, TFA salt (5a):
1H NMR (300 MHz, CD3OD, ppm) δ 7.613 (d, J ) 2.0 Hz, 1H, H-ar),
7.50 (dd, J1 ) 2.0 Hz, J2 ) 8.6 Hz, 1H, H-ar), 7.03 (d, J ) 8.6 Hz,
1H, H-ar), 4.18 (t, J ) 7.7 Hz, 2H, CH2-N), 3.61 (t, J ) 8.3 Hz, 2H,
CH2-CdN), 2.34 (s, 3H, CH3-Phe), 2.33 (m(5), 2H, CH2-CH2-
CH2); 13C NMR (75 MHz, CD3OD, ppm) δ 183.22 (CdN), 159.84
(C-ar), 140.77 (C-ar), 134.40 (C-ar), 131.62 (C-ar), 117.93 (C-ar),
113.67 (C-ar), 55.02 (CH2-N), 36.38 (CH2-CdN), 20.31 (CH3), 20.23
(CH2-CH2-CH2); ES-MS Mr 175.1, accurate mass EI obsd 175.0997,
calcd for C11H13NO, 175.0997 (monoisotopic).
LTEN glutamyl p-cresol ester (11a): 1H NMR (300 MHz, CD3OD,
ppm) δ 7.18 (d, J ) 8.6 Hz, 2H, H-ar), 6.98 (d, J ) 8.6 Hz, 2H, H-ar),
4.72 (t, 1H, R-Glu), 4.58 (dd, 1H, R-Asn), 4.41 (d, 1H, R-Thr), 4.16
(m, 1H, â-Thr), 3.99 (t, 1H, R-Leu), 2.78 (m, 2H, â-Asn), 2.69 (t, 2H,
γ-Glu), 2.33 (s, 3H, CH3-Ar), 2.29 (m, 1H, â-Glu), 2.02 (m, 1H,
â-Glu), 1.70 (m, 3H, â-Leu + γ-Leu), 1.24 (d, 3H, CH3-Thr), 0.95
(m, 6H, CH3-Leu); 13C NMR (75 MHz, CD3OD, ppm) δ 174.92, 174.17,
173.33, 172.92, 171.87, 171.05, 150.02, 136.66, 130.81, 122.48, 68.42,
60.45, 53.47, 52.93, 50.69, 41.60, 37.64, 31.04, 28.36, 25.39, 23.16,
21.93, 20.84, 20.18; ES-MS Mr 565.4, high-resolution FT-ICR MS
565.2827, calced for C26H39N5O9, 565.2748 (monoisotopic).
LTEN glutamyl p-thiocresol ester (11b): 1H NMR (300 MHz,
CD3OD, ppm) δ 7.34 (s, 4H, H-ar), 4.60 (m, 1H, R-Glu), 4.49 (m, 1H,
R-Asn), 4.45 (m, 1H, R-Thr), 4.12 (m, 2H, R-Leu + â-Thr), 2.85 (m,
2H, â-Asn), 2.79 (m, 2H, γ-Glu), 2.38 (s, 3H, CH3-Ar), 2.27 (m, 1H,
â-Glu), 2.03 (m, 1H, â-Glu), 1.69 (m, 3H, â-Leu + γ-Leu), 1.23 (d,
3H, CH3-Thr), 0.88 (m, 6H, CH3-Leu); 13C NMR (75 MHz, CD3OD,
ppm) δ 203.03, 175.91, 172.91, 171.73, 171.29, 142.00, 135.62, 131.33,
123.95, 68.27, 60.11, 53.19, 52.79, 51.64, 40.94, 39.61, 37.80, 27.80,
24.87, 22.89, 22.01, 21.86, 19.85; ES-MS Mr 581.1, calcd for
C26H39N5O8S, 581.3 (monoisotopic).
(1′-[2′-Hydroxy-5′-methylphenyl])-2-azacyclohept-1-ene, TFA salt
1
(5b): H NMR (300 MHz, CD3OD, ppm) δ 7.41 (s, 1H, H-ar), 7.16
(dd, 1H, Jo ) 8.6 Hz, Jm ) 2.3 Hz, H-ar), 6.68 (d, J ) 8.7 Hz, 1H,
H-ar), 3.81 (m, 2H, CH2), 3.12 (m, 2H, CH2), 2.23 (s, 3H, CH3), 1.94
(m, 2H, CH2), 1.72 (m, 4H, CH2); 13C NMR (75 MHz, CDCl3, ppm)
δ 183.27 (CdN), 173.24 (C-ar), 138.48 (C-ar), 130.90 (C-ar), 129.70
(C-ar), 124.72 (C-ar), 123.49 (C-ar), 46.97 (CH2-NdC), 31.50 (CH2),
28.42 (CH2), 28.10 (CH2), 24.43 (CH2), 20.72 (CH3); ES-MS Mr 203.1,
calcd for C13H17NO, 203.1 (monoisotopic).
6-Aminohexanethioic acid S-4′-methylphenyl ester, TFA salt (6):
1H NMR (300 MHz, CD3OD, ppm) δ 7.26 (s, 4H, H-ar), 2.92 (t, J )
7.5 Hz, 2H, CH2-N), 2.71 (t, J ) 7.2 Hz, 2H, CH2-CdN), 2.37 (s,
3H, CH3), 1.71 (m, 4H, 2 × CH2), 1.45 (m, 2H, CH2); 13C NMR (75
MHz, CD3OD, ppm) δ 199.54 (CdS), 141.20 (C-ar), 135.75 (C-ar),
131.12 (C-ar), 125.81 (C-ar), 43.92 (CH2-N), 40.67 (CH2-CdS), 28
(CH2), 27.6 (CH2), 26.20 (CH2), 21.42 (CH3); ES-MS Mr 236.9, calcd
for C13H19NOS, 237.1 (monoisotopic).
Hydrolysis of the Esters 11a and 11b. The following buffers were
used: (1) 0.1 M NH4HCO3 (pH 8); (2) 0.1 M NaCO3/NaHCO3 buffered
to pH 9.2; (3) 0.1 M NaCO3/NaHCO3 buffered to pH 10. Batches of
500 µg of ester were dissolved in 500 µL of buffer. After the required
time, the pH was adjusted to 2 using TFA and the solution was analyzed
by LC/MS. For the peroxide-catalyzed experiments, hydrogen peroxide
(0.3% in water) was added to the buffered solution.
1,1,1-Tris-(4′-methylphenyl)sulfanyl-6-aminohexane, TFA salt
1
(7): H NMR (300 MHz, CD3OD, ppm) δ 7.51 (d, J ) 7.6 Hz, 6H,
Human MRP14(89-114) (19). Five hundred micrograms of the
crude product (HF/p-cresol (9:1), 0 °C, 1 h) was dissolved in buffer A
and purified by preparative RP-HPLC. ES-MS: Mr 2728.7 (av); high-
resolution FT-ICR MS 2727.3019 (monoisotopic), calcd for
H-ar), 7.17 (d, J ) 7.6 Hz, 6H, H-ar), 2.81 (m, 2H, CH2-N), 2.35 (s,
9H, CH3), 1.75 (m, 2H, CH2), 1.65 (m, 2H, CH2), 1.52 (m, 2H, CH2),
(55) Sarin, V.; Kent, S. B. H.; Tam, J. P.; Merrifield, R. B. Anal. Biochem.
1981, 117, 147-157.
C114H171N38O39S, 2727.2208 (monoisotopic).