Ion Channels
FULL PAPER
excellent agreement found between functional and structur-
al studies (under meaningful conditions) is remarkable and
must be appreciated with appropriate reservation.
Acknowledgements
We thank D. Jeannerat, A. Pinto and J.-P. Saulnier for NMR measure-
ments, P. Perrottet and the group of F. GülaÅar for MS measurements, H.
Eder for elemental analyses, and the Swiss NSF for financial support (in-
cluding the National Research Program “Supramolecular Functional Ma-
terials” 4047–057496).
Figure 7. Comparison of A) function and B) suprastructure of 1 and 1a.
(A) Fractional HPTS emission I (lex 450 nm, lem 510 nm) as a function of
time after addition of base (DpH 0.9) followed by 2 (a, b, e: 20 mm, c, d:
0 mm) and then 1 (a, d: 1.6 mm, from ref. [36]) or 1a (b, c: 3.2 mm) at t=0 s
to EYPC–LUVs ꢄ HPTS (10 mm HEPES, 100 mm NaCl, pH 7.0; up to
100 mm 2 did not significantly increase the activity of 1a+2 in b). B) CD
spectrum of 1 (g) and 1a (c; 10 mm each, 10 mm HEPES, 100 mm
NaCl, pH 7.9, 258C, 200 mm EYPC).
[1] I. Tabushi, Y. Kuroda, K. Yokota, Tetrahedron Lett. 1982, 23, 4601–
4604.
[2] Y. Tanaka, Y. Kobuke, M. Sokabe, Angew. Chem. 1995, 107, 717–
719; Angew. Chem. Int. Ed. Engl. 1995, 34, 693–694.
[3] T. M. Fyles, D. Loock, X. Zhou, J. Am. Chem. Soc. 1998, 120, 2997–
3003.
[4] N. Sakai, B. Baumeister, S. Matile, ChemBioChem 2000, 1, 123–125.
[5] B. Baumeister, N. Sakai, S. Matile, Org. Lett. 2001, 3, 4229–4232.
[6] G. Das, P. Talukdar, S. Matile, Science 2002, 298, 1600–1602.
[7] V. Gorteau, F. Perret, G. Bollot, J. Mareda, A, N. Lazar, A. W. Co-
leman, D.-H. Tran, N. Sakai, S. Matile, J. Am. Chem. Soc. 2004, 126,
13592–13593.
[8] N. Sakai, J. Mareda, S. Matile, Acc. Chem. Res. 2005, 38, 79–87.
[9] N. Sakai, S. Matile, Chem. Commun. 2003, 2514–2523.
[10] S. Matile, Chem. Soc. Rev. 2001, 30, 158–167.
[11] R. S. Hector, M. S. Gin, Supramol. Chem. 2005, 17, 129–134.
[12] S. Matile, A. Som, N. Sordꢂ, Tetrahedron 2004, 60, 6405–6435.
[13] Y. J. Jeon, H. Kim, S. Jon, N. Selvapalam, D. H. Oh, I. Seo, C.-S.
Park, S. R. Jung, D.-S. Koh, K. Kim, J. Am. Chem. Soc. 2004, 126,
15944–15945.
[14] Synthetic Ion Channels (Ed.: U. Koert), Bioorg. Med. Chem. 2004,
12, 1277–1350, whole Issue.
[15] J. Zhang, B. Jing, S. L. Regen, J. Am. Chem. Soc. 2003, 125, 13984–
13987.
[16] J. M. Boon, B. D. Smith, Curr. Opin. Chem. Biol. 2002, 6, 749–756.
[17] G. W. Gokel, A. Mukhopadhyay, Chem. Soc. Rev. 2001, 30, 274–
286.
[18] G. J. Kirkovits, C. D. Hall, Adv. Supramol. Chem. 2000, 7, 1–47.
[19] P. Scrimin, P. Tecilla, Curr. Opin. Chem. Biol. 1999, 3, 730–735.
[20] H. Bayley, P. S. Cremer, Nature 2001, 413, 226–230.
[21] S. Terrettaz, W.-P. Ulrich, R. Guerrini, A. Verdini, H. Vogel, Angew.
Chem. 2001, 113, 1790–1793; Angew. Chem. Int. Ed. 2001, 40, 1740–
1743.
monomer structure of p-octiphenyls 1 and 1a. They can be
interpreted as support for the importance of internal crowd-
ing for the design of higher hollow barrel-stave architecture.
Molecular models were in agreement with this interpreta-
tion.
Conclusion
A colorful, surprisingly detailed and remarkably consistent
portrait of a ligand-gated ion channel emerges from a rich
collection of experimental facts on functional rigid-rod p-
stack architecture, made from scratch. All the characteristics
observed in spherical or planar lipid-bilayer membranes by
using fluorescent probes or conductance measurements
were significant and as planned. Ligand gating was found to
be highly cooperative as well as extremely selective, that is,
minor changes in both ligand and channel structure cleanly
canceled all function. The open ion channels were small,
long-lived, surprisingly homogenous, ohmic, and anion selec-
tive.
In research focusing on the design of function, it is most
important to obtain the experimental evidence for the de-
sired function. However, structural insights on at least the
two key concepts of the introduced design strategy appeared
desirable (as long as they could be secured under conditions
relevant for function). Because of their purple color, pres-
ence of charge-transfer complexes in open ion channels was
readily detectable with the naked eye. Direct experimental
support for the otherwise more elusive helix–barrel transi-
tion as structural basis of ligand gating was obtained based
on the principles of the exciton chirality method.[42] Corro-
borated by a series of control experiments, CD silencing by
an untwisting rotation of coupled NDI chromophores was in
excellent agreement with the conformational change from a
CD-active p-helix to a CD-silent barrel-stave ion channel.
Because the most stable suprastructure detected in structur-
al studies does not have to (and often does not) correspond
to the one responsible for function,[43] we reiterate that the
[22] D. W. Deamer, D. Branton, Acc. Chem. Res. 2002, 35, 817–825.
[23] R. S. Lokey, B. L. Iverson, Nature 1995, 375, 303–305.
[24] G. J. Gabriel, B. L. Iverson, J. Am. Chem. Soc. 2002, 124, 15174–
15175.
[25] J. Lee, V. Guelev, S. Sorey, D. W. Hoffman, B. L. Iverson, J. Am.
Chem. Soc. 2004, 126, 14036–14042.
[26] S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. M. K. Sanders,
J. F. Stoddart, J. Am. Chem. Soc. 2004, 126, 9884–9885.
[27] T. Iijima, S. A. Vignon, H. R. Tseng, T. Jarrosson, J. M. K. Sanders,
F. Marchioni, M. Venturi, E. Apostoli, V. Balzani, J. F. Stoddart,
Chem. Eur. J. 2004, 10, 6375–6392.
[28] D. G. Hamilton, N. Feeder, S. J. Teat, J. M. K. Sanders, New J. Chem.
1998, 22, 1019–1021.
[29] R. L. Furlan, S. Otto, J. K. M. Sanders, Proc. Natl. Acad. Sci. USA
2002, 99, 4801–4804.
[30] G. D. Fallon, M. A.-P. Lee, S. J. Langford, P. J. Nichols, Org. Lett.
2004, 6, 655–658.
[31] M. S. Cubberley, B. L. Iverson, J. Am. Chem. Soc. 2001, 123, 7560–
7563.
[32] F. Würthner, B. Hanke, M. Lysetska, G. Lambright, G. S. Harms,
Org. Lett. 2005, 7, 967–970.
Chem. Eur. J. 2005, 11, 6525 – 6532
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6531