3326
J. W. Morzycki et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3323–3326
2. (a) Rouhi, A. M. Chem. Eng. News 1995 (September 11),
28; (b) Advances in Experimental Medicine and Biology;
Saponins Used in Traditional and Modern Medicine;
Waller, G. R., Yamasaki, K., Eds.; Plenum: New York,
1996; Vol. 404.
3. Gryszkiewicz-Wojtkielewicz, A.; Jastrzebska, I.; Mor-
zycki, J. W.; Romanowska, D. B. Curr. Org. Chem.
2003, 7, 1257.
respects with the previously obtained protected saponin
OSW-1 (4f). Interestingly, the 22-O-glycoside 9 proved
to be stereochemically pure compound, though the
starting triol 6 was a mixture of epimers at C-22.
Probably, an opposite epimer reacted faster at O-16.
However, the configuration at C-22 in the isolated
product could not be concluded from its spectra. The
protecting groups were removed in the same way as
described above and the novel OSW-1 analogue 10 was
obtained.13
4. Guo, C.; Fuchs, P. L. Tetrahedron Lett. 1998, 39, 1099.
5. Guo, C.; LaCour, T. G.; Fuchs, P. L. Bioorg. Med. Chem.
Lett. 1999, 9, 419.
6. Deng, S.; Yu, B.; Lou, Y.; Hui, Y. J. Org. Chem. 1999, 64,
202.
7. Yu, W.; Jin, Z. J. Am. Chem. Soc. 2002, 124, 6576.
8. Xu, Q.; Peng, X.; Tian, W. Tetrahedron Lett. 2003, 44,
9375.
The aglycone of OSW-1 in its hemiketal form (2f) was
also treated with the monosaccharide (L-arabinopyr-
anose and D-xylopyranose derivatives) trichloroacetim-
idates (Scheme 4). The conversions were slightly higher
(about 30%) than in the previous glycosylation reac-
tions. Again a mixture of 22-O- (11) and 16b-O-gly-
cosylated (12) products was formed in almost equal
amounts. The former products were subjected to de-
protection in a usual manner to afford new analogues
13a and 13b.13
9. Morzycki, J. W.; Wojtkielewicz, A. Carbohydr. Res. 2002,
337, 1269.
10. (a) Ma, X.; Yu, B.; Hui, Y.; Xiao, D.; Ding, J. Carbohydr.
Res. 2000, 329, 495; (b) Ma, X.; Yu, B.; Hui, Y.; Miao, Z.;
Ding, J. Carbohydr. Res. 2001, 334, 159; (c) Ma, X.; Yu,
B.; Hui, Y.; Miao, Z.; Ding, J. Bioorg. Med. Chem. Lett.
2001, 11, 2153.
11. (a) Morzycki, J. W.; Gryszkiewicz, A.; Jastrzebska, I.
Tetrahedron 2001, 57, 2185; (b) Morzycki, J. W.;
Gryszkiewicz, A. Polish J. Chem. 2001, 75, 983.
12. Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32,
3353.
All described analogues were tested for cytotoxicity
against two breast cancer cell lines (MCF-7 and MDA–
MB-231) and endometrial cancer Ishikawa cell line.
OSW-1 (5f) influenced significantly [3H]thymidine incor-
poration, cell viability, and growth. The saponin induced
necrosis of the cells without apoptosis. The analogues
with linear side chain 5b, 5d, and 5e showed much lower
cytotoxicity that the saponin OSW-1. Other analogues
were not biologically active. Table 1 shows the results of
the growth inhibition tests and IC50 values determined for
the necrosis induced by OSW-1 in three lines of cancer.
IC50’s for the analogues (5b, 5d, 5e) were more than 1000
times higher than these determined for OSW-1.
13. Selected analytical data for compounds 5e, 10, and 13a.
5e: amorphous solid; IR(CHCl3): 3453, 1728, 1692, 1606,
1512, 1259, 1170, 1033; 1H NMR (200 MHz): 8.09 (d,
J ¼ 8:9, 2H), 6.98 (d, J ¼ 8:9, 2H), 5.35 (m, 1H), 4.94 (dd,
J ¼ 8:0, 7.2, 1H), 4.69 (m, 2H), 4.22 (brs, 1H), 4.17 (m,
1H), 4.15 (m, 1H), 3.88 (s, 3H), 3.75 (m, 1H), 3.66–3.73
(m, 2H), 3.40–3.55 (m, 3H), 2.65 (q, J ¼ 7:4, 1H), 1.95 (s,
3H), 1.03 (s, 3H), 1.01 (d, J ¼ 7:4, 3H), 0.86 (m, 3H), 0.80
(s, 3H); 13C NMR (50 MHz): 218.8 (C), 169.4 (C), 166.0
(C), 164.2 (C), 140.6 (C), 132.2 (2 · CH), 121.4 (CH), 121.3
(C), 114.0 (2 · CH), 102.2 (CH), 99.1 (CH), 88.5 (CH),
85.6 (C), 80.0 (CH); ESI-MS: 895.5 (MNaþ); HR-MS
calcd for C47H68O15Na (MNaþ): 895.4456; found:
895.4472. 10: IR(CHCl3): 3461, 1736, 1606, 1512, 1170,
1259, 1081; 1H NMR (200 MHz): 7.95 (d, J ¼ 8:7, 2H),
6.90 (d, J ¼ 8:7, 2H), 5.34 (m, 1H), 4.97 (m, 3H), 4.64 (d,
J ¼ 6:4, 1H), 4.52 (d, J ¼ 6:8, 1H), 3.96–4.04 (m, 2H),
3.94 (brs, 1H), 3.86 (s, 3H), 3.70–3.82 (m, 4H), 3.32–3.58
(m, 3H), 1.89 (s, 3H), 1.01 (s, 3H), 0.93 (d, J ¼ 7:0, 3H),
0.86 (d, J ¼ 6:2, 6H), 0.75 (s, 3H); 13C NMR (50 MHz):
218.8 (C), 169.7 (C), 166.3 (C), 163.9 (C), 141.0 (C), 132.2
(2 · CH), 121.4 (C), 121.0 (CH), 113.8 (2 · CH), 101.9
(CH), 100.6 (CH), 82.9 (C), 82.8 (CH), 80.7 (CH); ESI-
MS: 895.4 (MNaþ); HR-MS calcd for C47H68O15Na
(MNaþ): 895.4456; found: 895.4469. 13a: mp 199–
202 °C; IR (CHCl3): 3489, 1741, 1692, 1234, 1053. 1H
NMR (200 MHz): 5.33 (d, J ¼ 4:6, 1H), 4.73 (dd, J ¼ 6:2,
4.3, 1H), 4.34 (m, 2H), 3.74–3.96 (m, 4H), 3.58 (dd,
J ¼ 11:6, 3.0, 1H), 3.54 (m, 1H), 3.24 (d, J ¼ 7:6, 1H),
3.01 (q, J ¼ 7:3, 1H), 2.14 (s, 3H), 1.23 (d, J ¼ 7:3, 3H),
1.00 (s, 3H), 0.90 (d, J ¼ 6:2, 6H), 0.82 (s, 3H); 13C NMR
(50 MHz): 218.7 (C), 170.7 (C), 140.7 (C), 121.3 (CH), 99.5
(CH), 89.9 (CH), 85.4 (C); ESI-MS: 629.4 (MNaþ); Anal.
calcd for C34H54O9: C 67.30, H 8.97; found: C 67.17, H
9.02.
Acknowledgements
This work was supported by the State Committee for
Scientific Research (Grant No. 3 P05F 014 23). One of
the authors (A.W.) thanks Foundation for Polish Sci-
ence for a domestic grant for young scholars.
References and notes
1. (a) Kubo, S.; Mimaki, Y.; Terao, M.; Sashida, Y.;
Nikaido, T.; Ohmoto, T. Phytochemistry 1992, 31, 3969;
(b) Mimaki, Y.; Kuroda, M.; Kameyama, A.; Sashida, Y.;
Hirano, T.; Oka, K.; Maekawa, R.; Wada, T.; Sugita, K.;
Beutler, J. A. Bioorg. Med. Chem. Lett. 1997, 7, 633;
(c) Kuroda, M.; Mimaki, Y.; Yokosuka, A.; Sashida, Y.;
Beutler, J. A. J. Nat. Prod. 2001, 64, 88; (d) Kuroda, M.;
Mimaki, Y.; Yokosuka, A.; Sashida, Y. Chem. Pharm.
Bull. 2001, 49, 1042.