Our initial studies focused on reactions of 1,3-dienylcy-
clobutanol 1a with iodobenzene (2a) (Table 1). When (Z)-
reactions using PCy3 and P(o-Tol)3 with Pd2(dba)3‚CHCl3
also successfully proceed to give 3aa and 4aa in 55% and
85% yield, respectively (entries 2 and 3). The reactivity has
been decreased when bidentate ligands such as dppe and dppf
are used (entries 4 ad 5). It is clear from the studies of the
reaction temperature in the presence of P(o-Tol)3 that the
yield has been improved to 98% by carrying out the reaction
at 45 °C, and 3aa is produced with high selectivity at room
temperature (entries 6 and 7). On the other hand, the reaction
does not proceed when the (E)-isomer 1a is used as a
substrate (entry 8).
Table 1. Palladium-Catalyzed Reaction of Dienylcyclobutanols
(Z)- and (E)-1a with Iodobenzene (2a)a
Some results of palladium-catalyzed reactions of (Z)-1a
with various aryl iodides 2b-i are summarized in Table 2.
temp
(°C)
yield
(%)a
entry
substrate
ligand
3a a :4a a b,c
d
Table 2. Palladium-Catalyzed Reaction of Dienylcyclobutanols
(Z)-1a with Aryl Iodides 2b-ia
1
2
3
4
5
6
7
8
(Z)-1a
(Z)-1a
(Z)-1a
(Z)-1a
(Z)-1a
(Z)-1a
(Z)-1a
(E)-1a
PPh3
PCy3
60
60
60
60
60
45
25
60
77
55
85
2 (66)
8 (25)
98
87 (94)
nr
1.7:1
1.7:1
1.8:1
3a a only
3a a only
5.5:1
P(o-Tol)3
dppe
dppf
P(o-Tol)3
P(o-Tol)3
P(o-Tol)3
14:1
a The yields in parentheses are based on recovered starting material. b The
1
configurations of 3aa and 4aa were determined by NOESY and H NMR
yield
(%)a
coupling constants of olefinic protons. c The ratios were determined by the
isolation of each products. d 10 mol % Pd(PPh3)4 was used as a palladium
catalyst.
entry
Ar
product
3:4a
1
2
3
4
5
6
7
8
2-methoxyphenyl (2b)
4-methoxyphenyl (2c)
2-tolyl (2d )
4-tolyl (2e)
1-naphthyl (2f)
4-nitrophenyl (2g)
4-acetylphenyl (2h )
2-bromophenyl (2i)
3a b
80
77
91
88
62
86
57
73
3a b only
8.6:1
6.0:1
4.2:1
9.3:1
3a g only
3a h only
3a i only
3a c/4a c
3a d /4a d
3a e/4a e
3a f/4a f
3a g
1a is reacted with 2a in the presence of 10 mol % Pd(PPh3)4
and Ag2CO3 in toluene at 60 °C, the reaction is complete
within 2 h to afford a aryl-substituted cyclopentanone 3aa
along with further R-arylated product 4aa in 77% yield with
a ratio of 1.7:1 (entry 1). Interestingly, the geometries of
the obtained products 3aa and 4aa are determined as Z, and
the corresponding (E)-products are not observed. The
products 3aa and 4aa are not produced at all when K2CO3
and Cs2CO3 are used instead of Ag2CO3 as a base. The
3a h
3a i
a Products ratios were determined by isolation of the each products.
Substitution with methoxy and methyl groups in the ortho
and para positions exhibits similar reactivity to give the
corresponding products 3ab-ae in good yields with a small
amount of R-arylated products 4ac-ae (entries 1-4). The
reaction using 1-iodonaphthalene (2f) also proceeds to afford
3af and 4af in 63% yield with a ratio of 9.3:1 (entry 5). In
the reactions with nitro- and acetyl-substituted aryl iodides
2g and 2h, the corresponding products 3ag and 3ah are
obtained as the sole products, respectively (entries 6 and 7).
When 2-bromoiodobenzene (2i) is used, the 2-bromophenyl-
substituted cyclopentanone 3ai is chemoselectively produced
without the influence of a bromo atom (entry 8).
We next examined the reactions of various 1,3-dienylcy-
clobutanols 1b-d with 2a (Table 3). A substrate (Z)-1b
having a dipentyl group on the cyclobutane ring is success-
fully transformed to 3ba in 89% yield (entry 1). A trans-
3ca is obtained as the sole product by the reaction of trans-
(Z)-1c (entry 2). On the other hand, the reaction of the
diastereomer cis-(Z)-1c exclusively provides cis-3ca (entry
3). It is ascertained from these results that the ring expansion
process proceeds in a stereospecific manner.8 Substrate (Z)-
1d, substituted with a methyl group at the 3-position on the
(3) (a) Boontanonda, P.; Grigg, R. J. Chem. Soc., Chem. Commun. 1977,
583. (b) Clark, G. R.; Thiensathit, S. Tetrahedron Lett. 1985, 26, 2503. (c)
Demuth, M.; Pandey, B.; Wietfeld, B.; Said, H.; Viader, J. HelV. Chim.
Acta 1988, 71, 1392. (d) de Almeida Barbosa, L.-C.; Mann, J. J. Chem.
Soc., Perkin Trans. 1 1990, 177. (e) Kim, S.; Uh, K. H.; Lee, S.; Park, J.
H. Tetrahedron Lett. 1991, 32, 3395. (f) Nemoto, H.; Miyata, J.; Fukumoto,
K. Tetrahedron 1996, 52, 10363. (g) Nemoto, H.; Nagamochi, M.;
Fukumoto, K. J. Chem. Soc. Perkin Trans. 1 1993, 2329. (h) Nemoto, H.;
Nagamochi, M.; Ishibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74.
(i) Nemoto, H.; Miyata, J.; Ihara, M. Tetrahedron Lett. 1999, 40, 1933. (j)
Nemoto, H.; Takahashi, E.; Ihara, M. Org. Lett. 1999, 1, 517. (k) Nishimura,
T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645.
(4) (a) Nemoto, H.; Shiraki, M.; Fukumoto, K. Synlett 1994, 599. (b)
Nemoto, H.; Miyata, J.; Yoshida, M.; Raku, N.; Fukumoto, K. J. Org. Chem.
1997, 62, 7850. (c) Nemoto, H.; Yoshida, M.; Fukumoto, K.; Ihara, M.
Tetrahedron Lett. 1999, 40, 907. (d) Yoshida, M.; Ismail, M. A.-H.; Nemoto,
H.; Ihara, M. J. Chem. Soc., Perkin Trans. 1 2000, 2629.
(5) (a) Nemoto, H.; Yoshida, M.; Fukumoto, K. J. Org. Chem. 1997,
62, 6450. (b) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron Lett. 2000,
41, 5089. (c) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron 2002, 58,
7839. (d) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron Lett. 2001,
42, 3877.
(6) (a) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc.
1987, 109, 7908. (b) Mitchell, D.; Liebeskind L. S. J. Am. Chem. Soc. 1990,
112, 291. (c) Larock, R. C.; Reddy, Ch. K. Org. Lett. 2000, 2, 3325. (d)
Larock, R. C.; Reddy, Ch. K. J. Org. Chem. 2002, 67, 2027. (e) Yoshida,
M.; Sugimoto, K.; Ihara, M. ARKIVOC 2003, xiii, 35.
(7) Yoshida, M.; Nemoto, H.; Ihara, M. Tetrahedron Lett. 1999, 40, 8583.
1980
Org. Lett., Vol. 6, No. 12, 2004