G
W. Miura et al.
Special Topic
Synthesis
1,4-Dimethyl-6-phenylpyridin-2(1H)-one (8a-Ph) and 1,4-Dimeth-
yl-5-phenylpyridin-2(1H)-one (8a′-Ph) by Suzuki–Miyaura Cross-
Coupling of 8a
2009, 48, 5094. (j) Ackermann, L.; Vicente, R.; Kapdi, A. R.
Angew. Chem. Int. Ed. 2009, 48, 9792. (k) Sun, C.-L.; Li, B.-J.; Shi,
Z.-J. Chem. Commun. 2010, 46, 677. (l) Lyons, T. W.; Sanford, M.
S. Chem. Rev. 2010, 110, 1147. (m) Dudnik, A. S.; Gevorgyan, V.
Angew. Chem. Int. Ed. 2010, 49, 2096. (n) Satoh, T.; Miura, M.
Chem. Eur. J. 2010, 16, 11212. (o) Ackermann, L. Chem. Commun.
2010, 46, 4866. (p) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev.
2011, 111, 1780. (q) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem. Int. Ed. 2012, 51, 8960. (r) Guo, X.-X.; Gu, D.-W.;
Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. (s) Hirano, K.;
Miura, M. Chem. Lett. 2015, 44, 868.
In a glovebox filled with N2, Pd2(dba)3 (4.6 mg, 0.0050 mmol), P(t-Bu)3
(4.0 mg, 0.020 mmol), and KOH (17 mg, 0.30 mmol) were placed in a
20-mL two-necked reaction flask and dissolved in THF (0.50 mL). The
reaction flask was sealed with a septum and then taken out of the
glovebox. The mixture was stirred for 5 min at r.t. A solution of 8a/8a′
(93:7; 25 mg, 0.10 mmol) in THF (1.0 mL), iodobenzene (12 μL, 0.11
mmol), and water (0.15 mL) were sequentially added, and the mix-
ture was stirred for 12 h at r.t. The resulting mixture was quenched
with sat. aq NH4Cl and extracted with EtOAc (3 ×). The combined or-
ganic layers were dried (anhyd Na2SO4). After concentration under re-
duced pressure, column purification (silica gel, CH2Cl2/EtOAc/Et3N
1:1:0.02) followed by GPC (CHCl3) afforded a mixture of 1,4-dimethyl-
6-phenylpyridin-2(1H)-one (8a-Ph) and 1,4-dimethyl-5-phenylpyri-
din-2(1H)-one (8a′-Ph) (11 mg, 0.055 mmol, 55%) as a yellow oil; ra-
tio 8a-Ph/8a′-Ph 92:8.
1H NMR (400 MHz, CDCl3): δ = 2.09 (s, 0.080 × 3 H for 8a′-Ph), 2.19 (d,
J = 1.0 Hz, 0.92 × 3 H for 8a-Ph), 3.34 (s, 0.92 × 3 H for 8a-Ph), 3.56 (s,
0.080 × 3 H for 8a′-Ph), 5.96 (d, J = 2.0 Hz, 0.92 × 1 H for 8a-Ph), 6.41
(dd, J = 1.0, 2.0 Hz, 0.92 × 1 H for 8a-Ph), 6.49 (s, 0.080 × 1 H for 8a′-
Ph), 7.13 (s, 0.080 × 1 H for 8a′-Ph), 7.22–7.24 (m, 0.080 × 3 H for 8a′-
Ph), 7.32–7.34 (m, 0.92 × 2 H for 8a-Ph), 7.39–7.40 (m, 0.080 × 2 H for
8a′-Ph), 7.45–7.47 (m, 0.92 × 3 H for 8a-Ph).
(3) (a) Tamura, R.; Yamada, Y.; Nakao, Y.; Hiyama, T. Angew. Chem.
Int. Ed. 2012, 51, 5679. (b) Nakatani, A.; Hirano, K.; Satoh, T.;
Miura, M. Chem. Eur. J. 2013, 19, 7691. (c) Nakatani, A.; Hirano,
K.; Satoh, T.; Miura, M. J. Org. Chem. 2014, 79, 1377. (d) Najib, A.;
Tabuchi, S.; Hirano, K.; Miura, M. Heterocycles 2016, 92, 1187.
(e) Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2015, 54, 633.
(f) Das, D.; Biswas, A.; Karmakar, U.; Chand, S.; Samanta, R.
J. Org. Chem. 2016, 81, 842. (g) Peng, P.; Wang, J.; Jiang, H.; Liu,
H. Org. Lett. 2016, 18, 5376.
(4) See refs. 3c,d,g and: (a) Chen, Y.; Wang, F.; Jia, A.; Li, X. Chem.
Sci. 2012, 3, 3231. (b) Odani, R.; Hirano, K.; Satoh, T.; Miura, M.
Angew. Chem. Int. Ed. 2014, 53, 10784. (c) Anagnostaki, E. A.;
Fotiadou, A. D.; Demertzidou, V.; Zografos, A. L. Chem. Commun.
2014, 50, 6879. (d) Modak, A.; Rana, S.; Maiti, D. J. Org. Chem.
2015, 80, 296. (e) Chauhan, P.; Ravi, M.; Singh, S.; Prajapati, P.;
Yadav, P. P. RSC Adv. 2016, 6, 109.
13C{1H} NMR (100 MHz, CDCl3): for 8a-Ph δ = 21.3, 34.1, 110.5, 117.6,
128.5, 128.8, 129.3, 135.8, 149.0, 150.1, 163.9.
HRMS (APCI): m/z [M + H]+ calcd for C13H14NO: 200.1070; found:
200.1074.
(5) See ref. 4a and: (a) Itahara, T.; Ouseto, F. Synthesis 1984, 488.
(b) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 15996.
(6) (a) Li, Y.; Xie, F.; Li, X. J. Org. Chem. 2016, 81, 715. (b) Li, T.;
Wang, Z.; Xu, K.; Liu, W.; Zhang, X.; Mao, W.; Guo, Y.; Ge, X.;
Pan, F. Org. Lett. 2016, 18, 1064.
(7) Peng, P.; Wang, J.; Li, C.; Zhu, W.; Jiang, H.; Liu, H. RSC Adv. 2016,
6, 57441.
(8) Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 3742.
(9) Selected seminal works and reviews: (a) Ishiyama, T.; Takagi, J.;
Hartwig, J. F.; Miyaura, N. Angew. Chem. Int. Ed. 2002, 41, 3056.
(b) Chotana, G. A.; Rak, M. A.; Smith, M. R. III J. Am. Chem. Soc.
2005, 127, 10539. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T.
B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
Acknowledgment
This work was supported by JSPS KAKENHI Grant Nos. JP 15K13696
(Grant-in-Aid for Exploratory Research) and JP 15H05485 [Grant-in-
Aid for Young Scientists (A)] to K.H. and JP 24225002 [Grant-in-Aid for
Scientific Research (S)] to M.M.
Supporting Information
Supporting information for this article is available online at
(10) To the best of our knowledge, the nondirected catalytic C–H
borylation of 2-pyridones has not been reported while the reac-
tivity and selectivity of several nitrogen-containing heterocy-
cles has been extensively investigated; see: (a) Ishiyama, T.;
Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N. Adv. Synth.
Catal. 2003, 345, 1103. (b) Ishiyama, T.; Nobuta, Y.; Hartwig, J.
F.; Miyaura, N. Chem. Commun. 2003, 2924. (c) Mkhalid, I. A. I.;
Coventry, D. N.; Albesa-Jove, D.; Batsanov, A. S.; Howard, J. A. K.;
Perutz, R. N.; Marder, T. B. Angew. Chem. Int. Ed. 2006, 45, 866.
(d) Kallepalli, V. A.; Shi, F.; Paul, S.; Onyeozili, E. N.; Maleczka, R.
E.; Smith, M. R. J. Org. Chem. 2009, 74, 9199. (e) Klecka, M.; Pohl,
R.; Klepetarova, B.; Hocek, M. Org. Biomol. Chem. 2009, 7, 866.
(f) Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.;
Maleczka, R. E.; Smith, M. R. Angew. Chem. Int. Ed. 2013, 52,
12915. (g) Larsen, M. A.; Hartwig, J. F. J. Am. Chem. Soc. 2014,
136, 4287.
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References
(1) (a) Torres, M.; Gil, S.; Parra, M. Curr. Org. Chem. 2005, 9, 1757.
(b) Lagoja, I. M. Chem. Biodiversity 2005, 2, 1. (c) Hibi, S.; Ueno,
K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.;
Hanada, T.; Yonaga, M. J. Med. Chem. 2012, 55, 10584. (d) Hajek,
P.; McRobbie, H.; Myers, K. Thorax 2013, 68, 1037.
(2) Selected reviews and accounts: (a) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (b) Satoh, T.; Miura, M.
Chem. Lett. 2007, 36, 200. (c) Campeau, L. C.; Stuart, D. R.;
Fagnou, K. Aldrichimica Acta 2007, 40, 35. (d) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (e) Park, Y. J.; Park,
J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (f) Lewis, L. C.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
(g) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (h) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (i) Chen,
X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed.
(11) Although the exact reason is unclear, the use of dtbpy competi-
tively decomposed the substrate to lower the mass balance.
(12) Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura,
M. J. Am. Chem. Soc. 2009, 131, 5058.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2017, 49, A–H