C O M M U N I C A T I O N S
Table 2. Asymmetric [2+2+2] Cycloaddition of Various
R,ω-Diynes and Monoalkynes
In conclusion, we have reported an asymmetric [2+2+2]
cycloaddition of diynes and alkynes with oxygen functionalities.
This reaction proceeds with extremely high enantio- and diaste-
reoselectivity to give various axially chiral compounds. The present
procedure provides access to a new chiral pool of diol compounds
possessing C2 symmetry.
a
entry
Ar
Z
diyne
R
yield/%
ee/%
1
2
3
4
5
6
1-naphthyl
1-naphthyl
1-naphthyl
2-MeC6H4
2-Cl C6H4
4-MeO-1-
naphthyl
1-naphthyl
1-naphthyl
1-naphthyl
1-naphthyl
1-naphthyl
O
O
O
O
O
O
1a
1a
1a
1b
1c
1d
THP
TBS
76 (4a)b
74 (3ac)
99.5b
99.5c
98.5
99.6
97.7
99.4
MOM 76 (3ad)d
Me
Me
Me
85 (3ba)
85 (3ca)
72 (3da)
Acknowledgment. The authors thank Masaya Hirase for his
experimental assistance. This research was supported by a Grant-
in-Aid for Scientific Research on Priority Areas (A) “Exploitation
of Multi-Element Cyclic Molecules” from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.
7
8
9
10
11
NTs
NTs
1e
1e
1f
1g
1g
Me
THP
Me
Me
TBS
92 (3ea)
97 (4e)b
77 (3fa)
96 (3ga)
77 (3gc)e
99.4
99.1b
>99.8
>99.8
98.6c
C(CO2Et)2
CH2
CH2
Supporting Information Available: Experimental details and
spectral data for R,ω-diynes and products. This material is available
a Only dl isomer was detected by NMR spectrum, except entries 3 and
11. b Yield and ee were determined as diol 4a or 4e after deprotection using
PPTS in EtOH. c Ee was determined as diol 4a or 4g after deprotection
using TBAF in THF. d dl/meso) 93/7. e dl/meso ) 91/9.
References
(1) (a) Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed.; VCH: Weinheim,
2000. (b) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809.
(2) (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc.
1988, 110, 8153. (b) Hayashi, T.; Hayashizaki, K.; Ito, Y. Tetrahedron
Lett. 1989, 30, 215
(3) (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J.
Am. Chem. Soc. 1995, 117, 9101. (b) Kamikawa, T.; Hayashi, T.
Tetrahedron 1999, 55, 3455.
(4) Shimada, T.; Cho, Y.-H.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 13396.
(5) (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051. (b)
Cammidge, A. N.; Cre´py, K. V. L. Chem. Commun. 2000, 1723.
(6) (a) Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S.-I. Tetrahe-
dron Lett. 1995, 36, 9519. (b) Li, X.; Hewgley, J. B.; Mulrooney, C. A.;
Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500 and references
therein.
(7) (a) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun.
2001, 980. (b) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y.
Chem. Commun. 2002, 914.
(entries 1 and 2). 2-Methyl-, 2-chlorophenyl, and 4-methoxy-1-
naphthyl were acceptable as substituents on the terminus of R,ω-
diynes (entries 4-6). Nitrogen-bridged diynes also reacted with
alkynes 2a,b in high ee and de (entries 7 and 8). In the reaction of
carbon-bridged diynes 1f,g and methyl ether 2a, almost perfect
enantioselectivity was achieved, and the peak of the minor
enantiomer was below the level of detection by HPLC analyses
(entries 9 and 10).
With a cis-olefinic tether, octa-1,7-diyne 1h also reacted with
alkyne 2a under the same reaction conditions, and the subsequent
aromatization by DDQ oxidation gave chiral ternaphthyl 5ha in
high ee and de (eq 1).16
(8) The coupling of phenol and aryllead using excess amounts of chiral
amines: Saito, S.; Kano, T.; Muto, H.; Nakadai, H.; Yamamoto, H. J.
Am. Chem. Soc. 1999, 121, 8943.
(9) A recent example of chiral transfer along with benzannulation for the
synthesis of axially chiral biaryls: Nishii, Y.; Wakasugi, K.; Koga, K.;
Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358.
(10) Only one example of an intramolecular asymmetric [2+2+2] cycloaddition
has been reported for the synthesis of a helically chiral compound (53%,
48% ee): Stara´, I. G.; Stary, I.; Kolla´rovic, A.; Teply, F.; Vyskocil, S.;
Saman, D. Tetrahedron Lett. 1999, 40, 1993.
(11) Nickel-catalyzed asymmetric [2+2+2] cycloaddition for the formation
of benzylic chiral carbon centers: Sato, Y.; Nishimata, T.; Mori, M.
Heterocycles 1997, 44, 443.
(12) (a) Saito, S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901. (b) Lautens,
M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49.
(13) Nickel-catalyzed non-asymmetric [2+2+2] cycloaddition for the synthesis
of biaryl compounds: Sato, Y.; Ohashi, K.; Mori, M. Tetrahedron Lett.
1999, 40, 5231.
(14) (a) Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3,
1217. (b) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852. (c)
Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi, K. Synlett
2002, 1681. (d) Shibata, T.; Kadowaki, S.; Hirase, M.; Takagi, K. Synlett
2003, 573.
(15) Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.
(16) The circular dichroism exciton chirality method was applied to determine
the absolute configuration of product 3aa prepared by (S,S)- and (R,R)-
MeDUPHOS, respectively, and 3ha prepared by (S,S)-MeDUPHOS (see
Supporting Information).
The present asymmetric [2+2+2] cycloaddition was applied to
the unsymmetrical diyne 6, and the chiral biaryl compound 7 was
obtained (eq 2). In this reaction, EtDUPHOS gave a significantly
better enantioselectivity than MeDUPHOS.
JA048131D
9
J. AM. CHEM. SOC. VOL. 126, NO. 27, 2004 8383