D.-Y. Li, Y. Wei, M. Shi
SHORT COMMUNICATION
20672127, 21421091, 21372250, 21121062, 21302203 and
20732008).
tion pathways are shown in Scheme 5. Initially, the coordi-
nation of ynesulfonamide 1a with AuI catalyst generates
gold complex Int 1. The gold complex Int 1 is transferred
to the more stable carbocationic intermediate Int 2 without [1] a) P. A. Wender, B. L. Miller, Nature 2009, 460, 197; b) P. A.
Wender, F. C. Bi, G. G. Gamber, F. Gosselin, R. D. Hubbard,
M. J. C. Scanio, R. Sun, T. J. Williams, L. Zhang, Pure Appl.
Chem. 2002, 74, 25; c) B. M. Trost, Acc. Chem. Res. 2002, 35,
an energy barrier. Passing through transition state TS 1
with an energy barrier of 26.7 kcal/mol, the O attacks the
electrophilic carbon to give another stable carbocationic in-
695.
termediate Int 3. Then the intermediate Int 3 undergoes C–
O bond cleavage via transition state TS 2 with an energy
barrier of 26.2 kcal/mol, generating the product complex
Int 4. The product complex Int 4 is finally cleaved to yield
separate product 2a with AuI catalyst. Moreover, the DFT
calculations show that the product 2a is more stable than
the reactant 1a by 4.5 kcal/mol, indicating that the forma-
tion of product 2 is an exothermic process.
Due to product 2x’s instability in silica gel column
chromatography, it was transformed into stable and separa-
ble product 3x via a one-pot detosylation process in the
presence of a magnesium scraps with methanol (Scheme 6).
The product 2y could be easily transformed into detosyl-
ated derivative 3y in good yield (Scheme 6). The compound
3x is a useful material since it has excellent UV block activi-
ties,[9] and compound 3y could be used as a model com-
pound for treating tumors, cancer and hyper proliferative
diseases.[10]
[2] For a reviews, see: a) I. Volchkov, D. Lee, Chem. Soc. Rev. 2014,
43, 4381; for natural products syntheses, see: b) B. M. Trost,
F. D. Toste, J. Am. Chem. Soc. 2000, 122, 11262; c) B. M. Trost,
W. Tang, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 14785; d)
A. K. Mandal, J. S. Schneekloth, K. Kuramochi, C. M. Crews,
Org. Lett. 2006, 8, 427; e) B. M. Trost, D. Amans, W. M. Segan-
ish, C. K. Chung, Chem. Eur. J. 2012, 18, 2961. For several
typical examples, see: f) S. Matsubara, K. Takai, H. Nozaki,
Tetrahedron Lett. 1983, 24, 3741; g) T. Hosogai, Y. Fujita, Y.
Ninagawa, T. Nishida, Chem. Lett. 1982, 357; h) J. Belgacem,
J. Kress, J. A. Osborn, J. Am. Chem. Soc. 1992, 114, 1501; i) J.
Jacob, J. H. Espenson, J. H. Jensen, M. S. Gordon, Organome-
tallics 1998, 17, 1835; j) G. Wang, A. Jimtaisong, R. L. Luck,
Organometallics 2004, 23, 4522; k) S. Bellemin-Laponnaz, H.
Gisie, J. P. Le Ny, J. A. Osborn, Angew. Chem. Int. Ed. Engl.
1997, 36, 976; Angew. Chem. 1997, 109, 1011.
[3] For a review, see: a) D. Lee, M. Kim, Org. Biomol. Chem. 2007,
5, 3418; For Au- and Pt-involved 1,3-transposition, see: b) K.
Miki, K. Ohe, S. Uemura, J. Org. Chem. 2003, 68, 8505; c) S.
López, E. Herrero-Gomez, P. Perez-Galan, C. Nieto-Ober-
huber, A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45,
6029; Angew. Chem. 2006, 118, 6175; d) C. Nieto-Oberhuber,
S. Lopez, M. P. Munoz, E. Jimenez-Nunez, E. Bunuel, D. J.
Cardenas, A. M. Echavarren, Chem. Eur. J. 2006, 12, 1694; e)
B. Martin-Matute, C. Nevado, D. J. Cardenas, A. M. Echav-
arren, J. Am. Chem. Soc. 2003, 125, 5757; f) E. J. Cho, M. Kim,
D. Lee, Org. Lett. 2006, 8, 5413; g) K. Ohe, M. Fujita, H.
Matsumoto, Y. Tai, K. Miki, J. Am. Chem. Soc. 2006, 128,
9270; h) D. J. Gorin, P. Dube, F. D. Toste, J. Am. Chem. Soc.
2006, 128, 14480. For other metal involved 1,3-transposition,
see:; i) M. Kim, R. L. Miller, D. Lee, J. Am. Chem. Soc. 2005,
127, 12818; j) T. Takeda, S. Kuroi, M. Ozaki, A. Tsubouchi,
Org. Lett. 2004, 6, 3207; k) J. Barluenga, P. García-García, D.
de Sáa, M. A. Fernández-Rodríguez, R. B. de la Rúa, A. Ball-
esteros, E. Aguilar, M. Tomás, Angew. Chem. Int. Ed. 2007, 46,
2610; Angew. Chem. 2007, 119, 2664; l) D. B. Kimball, T. J. R.
Weakley, R. Herges, M. M. Haley, J. Am. Chem. Soc. 2002,
124, 13463; m) D. B. Kimball, R. Herges, M. M. Haley, J. Am.
Chem. Soc. 2002, 124, 1572.
Scheme 6. Further transformation of products 2x and 2y.
In summary, we have explored a novel and efficient
gold(I)-catalyzed intramolecular 1,3-O-transposition reac-
tion under mild conditions. Through further transforma-
tions, two useful compounds can be easily obtained after
simple treatment. This new strategy demonstrates a practi-
cal protocol for synthesis of ynamides starting from yne
sulfonamides, which have a nitrogen atom tethered at alk-
ynyl terminal. The control experiments and DFT calcula-
tion results give experimental and theoretical explanations
for the proposed intramolecular 1,3-O atom transfer
mechanism, and also show that the formation of product 2
is an exothermic process.
[4] a) C. Morrill, R. H. Grubbs, J. Am. Chem. Soc. 2005, 127,
2842; b) C. Morrill, G. L. Beutner, R. H. Grubbs, J. Org. Chem.
2006, 71, 7813; c) J. Belgacem, J. Kress, J. A. Osborn, J. Am.
Chem. Soc. 1992, 114, 1501; d) J. Belgacem, J. Kress, J. A. Os-
born, J. Mol. Catal. 1994, 86, 267; e) P. Chabardes, E. Kuntz,
J. Varagnat, Tetrahedron 1977, 33, 1775.
[5] a) M. Franck-Neumann, P. Geoffroy, J. J. Lohmann, Tetrahe-
dron Lett. 1983, 24, 1775; b) M. Franck-Neumann, P. Geoffroy,
Tetrahedron Lett. 1983, 24, 1779; c) R. A. Seburg, E. V. Pat-
terson, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc. 1997,
119, 5847.
[6] For both ends attached to carbon atoms, see: a) R. K. Shi-
roodi, M. Soltani, V. Gevorgyan, J. Am. Chem. Soc. 2014, 136,
9882; b) T. Takeda, S. Kuroi, M. Ozaki, A. Tsubouchi, Org.
Lett. 2004, 6, 3207; c) T. Takeda, M. Ozaki, S. Kuroi, A. Tsu-
bouchi, J. Org. Chem. 2005, 70, 4233.
[7] For review on ynamides, see: a) K. A. DeKorver, H. Li, A. G.
Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev.
2010, 110, 5064. For gold-catalyzed of ynamide, see:; b) C. Li,
L. Zhang, Org. Lett. 2011, 13, 1738; c) S. N. Karad, R.-S. Liu,
Angew. Chem. Int. Ed. 2014, 53, 9072; Angew. Chem. 2014, 126,
9218; d) S. N. Karad, S. Bhunia, R.-S. Liu, Angew. Chem. Int.
Ed. 2012, 51, 8722; Angew. Chem. 2014, 124, 8852.
Acknowledgments
The authors are grateful for the financial support from the
National Basic Research Program of China [grant number (973)-
2015CB856603] and the National Natural Science Foundation of
China (NSFC) (grant numbers 20472096, 21372241, 21361140350,
4112
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 4108–4113