C O M M U N I C A T I O N S
Scheme 1
Figure 1. 500 MHz 1H NMR (A) and 125 MHz 13C NMR (B)
complexation experiments between siloxy alkyne 1 (0.1 M in CD2Cl2) and
AgNTf2 at 200 K.
Scheme 2
Scheme 3
based activation, distinguishes our findings from [2 + 2] cyclo-
additions of other heteroatom-functionalized alkynes and sets an
important precedent for broad investigation of reactivity of this
silver(I) catalyst.
Acknowledgment. We thank the Chicago Drug and Chemical
Association for undergraduate Award to R.F.S., and NIH Chemistry-
Biology Training Grant for predoctoral fellowship for M.P.S. S.A.K
thanks Amgen for a Young Investigator’s Award. S.A.K. is a fellow
of the Alfred P. Sloan Foundation. We thank Professor Yamamoto
and Professor He for helpful discussions.
Supporting Information Available: Full characterization of new
compounds and selected experimental procedures. This material is
References
(1) (a) Yanagisawa, A.; Nakashima, H.; Ashiba, I.; Yamamoto, H. J. Am.
Chem. Soc. 1996, 118, 4723. (b) Ferraris, D.; Young, B.; Dudding, T.;
Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548. (c) Wei, C.; Li, Z.; Li, C.
J. Org. Lett. 2003, 5, 4473. (d) Josephsohn, N. S.; Snapper, M. C.;
Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4018. (e) Momiyama, N.;
Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 6038.
(2) (a) Cirakovic, J.; Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2002,
124, 9370. (b) Dias, H. V. R.; Browning, R. G.; Polach, S. A.;
Diyabalanage, H. V. K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125, 9270.
(c) Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202.
(3) Schramm, M. P.; Reddy, D. S.; Kozmin, S. A. Angew. Chem., Int. Ed.
2001, 40, 4274.
(Scheme 2). This experiment revealed a complete scrambling of
the deuterium label, which is fully consistent with the stepwise
reaction mechanism.11
Scheme 3 depicts two plausible mechanistic pathways, including
a classical LUMO-lowering Lewis acid activation of the enone (path
A), and silver-based activation of siloxy alkyne, followed by 1,4-
addition and trapping of the ketenium ion (path B). While the
catalytic mechanism has not been fully elucidated, we currently
favor path B. We observed that treatment of a suspension of AgNTf2
in CH2Cl2 with siloxy alkyne resulted in formation of a homoge-
neous solution. Subsequent low-temperature NMR studies revealed
facile complexation of siloxy alkyne 1 with AgNTf2 even at -73
°C, as indicated by profound changes in 1H and 13C chemical shifts
of the alkyne (Figure 1).12 Addition of the enone 2 to this Ag-
alkyne complex resulted in rapid formation of product 3 within 1
min at -43 °C. Interestingly, a similar effect was not observed
using AgOTf, highlighting the importance of the counterion. In
contrast, addition of a stoichiometric amount of AgNTf2 to the
enone 2 at 20 °C results in only moderate changes in the NMR
spectrum. Furthermore, AgNTf2 did not efficiently catalyze [2 +
2] cycloadditions of enones with silyl enol ethers.13 These results
indicate that the catalytic role of AgNTf2 is most likely due to
complexation and activation of the siloxy alkyne toward subsequent
stepwise cycloadditon (path B).14
(4) For a recent review of ynolates, see: Shindo, M. Synthesis 2003, 2275.
(5) There are two reports describing Lewis acid-promoted reactions of siloxy
alkynes with aldehydes and imines: (a) Kowalski, C. J.; Sakdarat, S. J.
Org. Chem. 1990, 55, 1977. (b) Shindo, M.; Oya, S.; Sato, Y.; Shishido,
K. Heterocycles 2000, 52, 545.
(6) Ficini, J. Tetrahedron 1976, 32, 1449.
(7) (a) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem.
Soc. 1992, 114, 8869. (b) During the submission of the present manuscript,
the Cu-catalyzed asymmetric [2 + 2] cycloaddition of alkynyl sulfides
was reported: Ito, H.; Hasegawa, M.; Takenaka, Y.; Kobayashi, T.; Iguchi,
K. J. Am. Chem. Soc. 2004, 126, 4520.
(8) For selected examples, see: (a) Noyori, R.; Ishigami, T.; Hayashi, N.;
Takaya, H. J. Am. Chem. Soc. 1973, 95, 1674. (b) Mitsudo, T.; Naruse,
H.; Kondo, T.; Ozaki, Y.; Watenabe, Y. Angew. Chem., Int. Ed. Engl.
1994, 33, 580. (c) Baik, T.-G.; Lusi, A. L.; Wang, L.-C.; Krische, M. J.
J. Am. Chem. Soc. 2001, 123, 6716.
(9) For thermal cycloadditions of siloxy alkynes with ketenes, see: (a)
Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1672. (b) Danheiser,
R. L.; Gee, S. K.; Perez, J. J. J. Am. Chem. Soc. 1986, 108, 806. (c)
Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693.
(10) For preparation of AgNTf2, see: Vij, A.; Zheng, Y. Y.; Kirchmeier, R.
L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 3281.
(11) Control experiments indicated that no isomerization of either 16 or 18
occurred during their exposure to AgNTf2 for 30 min at 20 °C.
(12) For chemical shift changes upon complexation of alkynes and alkenes to
Ag(I) ions, see: Lewandos, G. S.; Gregston, D. K. Nelson, F. R. J.
Organomet. Chem. 1976, 118, 363.
(13) Takani, K.; Ueno, M.; Inanaga, K.; Ihara, M. J. Org. Chem. 2004, 69,
517 and references therein.
(14) For potentially mechanistically related Ni(0)-catalyzed reactions of alkynes
with enones and aldehydes, see: (a) Montgomery, J. Acc. Chem. Res.
2000, 33, 467. (b) Miller, K. M.; Huang, W. S.; Jamison, T. F. J. Am.
Chem. Soc. 2003, 125, 3442 and references therein.
In summary, we have described the first silver-catalyzed [2 +
2] cycloadditions of silyl ynol ethers with a range of unsaturated
carbonyl compounds. The discovery of a unique AgNTf2 catalyst,
which promotes this transformation presumably via nucleophile-
JA048251L
9
J. AM. CHEM. SOC. VOL. 126, NO. 24, 2004 7443